Background: Allopregnanolone (3α, 5α-tetrahydroprogesterone) is an inhibitory neurosteroid synthesized from progesterone 5α-reductase activity in the brain and has anxiolytic, antidepressant, sedative, anticonvulsant, and analgesic activity. Altered levels of allopregnanolone cause anxiety, depression, premenstrual syndrome, and psychiatric disorders. Although allopregnanolone exerts most of its actions by modulating GABA receptor, NMDA receptor, BDNF expression, and PXR activity, a recent study showed its effects are blocked by mifepristone on lordosis behavior which indicates the involvement of progestin or glucocorticoid receptors in the effects of allopregnanolone since mifepristone blocks both these receptors. However, whether these receptors are involved in acute anxiolytic or antidepressant-like effects is unknown.
Methods: Adult male Wistar rats were used to study whether the prior administration of mifepristone would alter the effects of allopregnanolone in the elevated plus maze (EPM) and forced swim test (FST) was evaluated.
Results: 10 mg/Kg dose of allopregnanolone increased percent open arm entries in the EPM, whereas 3 mg/Kg dose of allopregnanolone decreased percent immobility in the FST. Mifepristone administration resulted in a U-shaped response in the FST (with 1 mg/Kg, s.c., decreasing the immobility time) without significantly impacting the behavior in the EPM. In combination studies, mifepristone blocked the anxiolytic and antidepressant effects of allopregnanolone.
Conclusion: The current study provides evidence for the first time that progestin or glucocorticoid receptors are involved in the acute anxiolytic and antidepressant effects of allopregnanolone. Understanding the mechanism of action of allopregnanolone will help us design better therapeutic strategies to treat neuropsychiatric diseases such as depression and anxiety.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00207454.2022.2153047 | DOI Listing |
Sci Adv
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
A key response to acute stress is the increased brain synthesis of the neurosteroid allopregnanolone (AP). Although the rate-limiting step of this reaction is catalyzed by 5α-reductase (5αR), the role of its two primary isoenzymes, 5αR1 and 5αR2, in stress reactivity remains unclear. Here, we found that acute stress led to increased levels of 5αR2, but not 5αR1, in the medial prefrontal cortex (mPFC) of male, but not female, rats.
View Article and Find Full Text PDFTijdschr Psychiatr
January 2025
Background: Brexanolone (Zulresso) and zuranolone (Zurzuvae) are two synthetic neuroactive steroids that were approved by the U.S. Food and Drug Administration in March 2019 (as an intravenous treatment) and August 2023 (as an oral treatment) respectively, for the treatment of postpartum depression.
View Article and Find Full Text PDFPaediatr Drugs
January 2025
Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
Oral ganaxolone (ZTALMY), a synthetic analogue of the endogenous neuroactive steroid allopregnanolone, acts as a positive allosteric modulator of synaptic and extra-synaptic γ-aminobutyric acid (GABA) type A receptor function in the CNS. In the EU and the UK, it is approved for the adjunctive treatment of epileptic seizures associated with cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) in patients aged 2-17 years. In a multinational phase III study (Marigold), 17 weeks' therapy with adjunctive ganaxolone, administered orally three times daily with food, significantly reduced 28-day major motor seizure frequency from baseline versus placebo in patients aged 2-19 years with CDD-associated refractory epilepsy.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy.
An aberrant pro-inflammatory microglia response has been associated with most neurodegenerative disorders. Identifying microglia druggable checkpoints to restore their physiological functions is an emerging challenge. Recent data have shown that microglia produce de novo neurosteroids, endogenous molecules exerting potent anti-inflammatory activity.
View Article and Find Full Text PDFNeuropharmacology
March 2025
Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy. Electronic address:
The central nervous system is a well-known steroidogenic tissue producing, among others, cholesterol metabolites such as neuroactive steroids, oxysterols and steroid hormones. It is well known that these endogenous molecules affect several receptor classes, including ionotropic GABAergic and NMDA glutamatergic receptors in neurons. It has been shown that also ionotropic purinergic (P2X) receptors are cholesterol metabolites' targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!