A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differential Surface Engineering Generates Core-Shell Porous Silicon Nanoparticles for Controlled and Targeted Delivery of an Anticancer Drug. | LitMetric

Differential Surface Engineering Generates Core-Shell Porous Silicon Nanoparticles for Controlled and Targeted Delivery of an Anticancer Drug.

ACS Appl Mater Interfaces

Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.

Published: December 2022

An approach to differentially modify the internal surface of porous silicon nanoparticles (pSiNPs) with hydrophobic dodecene and the external surface with antifouling poly--(2-hydroxypropyl) acrylamide (polyHPAm) as well as a cell-targeting peptide was developed. Specifically, to generate these core-shell pSiNPs, the interior surface of a porous silicon (pSi) film was hydrosilylated with 1-dodecene, followed by ultrasonication to create pSiNPs. The new external surfaces were modified by silanization with a polymerization initiator, and surface-initiated atom transfer radical polymerization was performed to introduce polyHPAm brushes. Afterward, a fraction of the polymer side chain hydroxyl groups was activated to conjugate cRGDfK─a peptide with a high affinity and selectivity for the αβ integrin receptor that is overexpressed in prostate and melanoma cancers. Finally, camptothecin, a hydrophobic anti-cancer drug, was successfully loaded into the pores. This drug delivery system showed excellent colloidal stability in a cell culture medium, and the drug release kinetics could be fine-tuned by the combination of internal and external surface modifications. studies by confocal microscopy and flow cytometry revealed improved cellular association attributed to cRGDfK. Furthermore, the cell viability results showed that the drug-loaded and peptide-functionalized nanoparticles had enhanced cytotoxicity toward a C4-2B prostate carcinoma cell line in both 2D cell culture and a 3D spheroid model.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c16370DOI Listing

Publication Analysis

Top Keywords

porous silicon
12
silicon nanoparticles
8
surface porous
8
external surface
8
cell culture
8
differential surface
4
surface engineering
4
engineering generates
4
generates core-shell
4
core-shell porous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!