A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Novel Composite of Zinc-based Metal Organic Framework Embedded with SnO Nanoparticle as a Photocatalyst for Methylene Blue Dye Degradation as well as Fluorometric Probe for Nitroaromatic Compounds Detection. | LitMetric

A facile bottom up synthesis technique is opted for the preparation of novel composite SnO@Zn-BTC. This synthesized composite is fully characterized by Fourier Transform Infrared (FTIR) Spectroscopy, Powder X-Ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), and Elemental mapping techniques. Optical analysis was performed using UV-Visible absorption spectroscopy and fluorescence studies. Further this composite was utilized for the first time as a photocatalyst for methylene blue (MB) dye degradation under sunlight irradiation. This photocatalyst shows degradation efficiency of 89% within 100 min of exposure of sunlight. In addition to that, the synthesized composite can be utilized as a fluorescence probe for detection of NACs via 'turn-off" quenching response. This composite is extremely sensitive towards 3-NA in aqueous medium with quenching efficiency of 75.42%, which is highest quenching rate till reported. There occurs no interference for detecting 3-NA in the presence of other NACs. The linear fitting of the Stern-Volmer plot for 3-NA shows large quenching constant (K) of 0.0115 ppb with correlation coefficient R = 0.9943 proves higher sensitivity of composite in sensing process. The outstanding sensitivity of composite for 3-NA is certified by the low detection limit (LOD) of 25 ppb (0.18 µM). Photoinduced Electron Transfer (PET) and Fluorescence Resonance Energy Transfer (FRET) are the mechanisms used for clarification of quenching response of PL intensity by NACs via density functional theory (DFT) calculations and extent spectral overlap, respectively. Hence, synthesized composite is verified as multi-component system to act as excellent photocatalyst as well as fluorescent sensor.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-022-03055-5DOI Listing

Publication Analysis

Top Keywords

synthesized composite
12
novel composite
8
photocatalyst methylene
8
methylene blue
8
blue dye
8
dye degradation
8
composite
8
composite utilized
8
quenching response
8
sensitivity composite
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!