White and brown rot fungi efficiently deconstruct lignocellulose in wood, Earth's largest pool of aboveground biotic carbon and an important natural resource. Despite its vital importance, little is known about the metabolomic signatures among fungal species and nutritional modes (rot types). In this study, we used GC-MS metabolomics in solid wood substrates () to compare brown rot fungi (Rhodonia placenta and Gloeophylum trabeum) and white rot fungi (Trametes versicolor and Pleurotus ostreatus) at two decay stages (earlier and later), finding identifiable patterns for brown rot fungi at later decay stages. These patterns occurred in highly reducing environments that were not observed in white rot fungi. Metabolomes measured among the two white rot fungi were notably different, but we found a potential biomarker compound, galactitol, that was characteristic to white rot taxa. In addition, we found that white rot fungi were more efficient at catabolizing phenolic compounds that were originally present in wood. Collectively, white rot fungi were characterized by measured sugar release relative to higher carbohydrate solubilization by brown rot fungi, a distinction in soluble sugar availability that might shape success in the face of "cheater" competitors. This need to protect excess free sugars may explain the differentially high brown rot fungal production of pyranones and furanones, likely linked to an expansion of polyketide synthase genes. Despite the ecological and economic importance of wood-degrading fungi, little is known about the array of metabolites that fungi produce during wood decomposition. This study provides an in-depth insight into the wood decomposition process by analyzing and comparing the changes of >100 compounds produced by fungi with metabolic distinct nutritional modes (white and brown rot fungi) at different decay stages. We found a unique pattern of metabolites that correlated well with brown rot (carbohydrate selective mode) in later decay. These compounds were in line with some of the physiochemical and genetic features previously seen in these fungi such as a faster sugar release, lower pH, and the expansion of polyketide-synthase genes compared to white rot fungi (lignin-degrading mode). This study provides spatiotemporally resolved mechanism insights as well as critical groundwork that will be valuable for studies in basic biology and ecology, as well as applied biomass deconstruction and bioremediation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769625 | PMC |
http://dx.doi.org/10.1128/msphere.00545-22 | DOI Listing |
Plant Dis
January 2025
Barani agricultural research institute, Chakwal, chakwal, Punjab, Pakistan;
Crown rot impacted olive plants (cv. Koroneiki) in an orchard in Chakwal, Punjab, Pakistan (32° N, 72° E), with a prevalence of 60%. Observable symptoms included leaf chlorosis, defoliation, wilting, and twig dieback in 6-8-year-old plants, ultimately resulting in their demise (Fig.
View Article and Find Full Text PDFSci Rep
January 2025
Section of Ecological Plant Protection, University of Kassel, 37213, Witzenhausen, Germany.
From 2016 to 2019, 128 organic and conventional spring and winter pea fields in Germany were surveyed to determine the effects of cropping history and pedo-climatic conditions on pea root health, the diversity of Fusarium and Didymella communities and their collective effect on pea yield. Roots generally appeared healthy or showed minor disease symptoms despite the frequent occurrence of 4 Didymella and 14 Fusarium species. Soil pH interacted with the occurrence of the Fusarium oxysporum species complex (FOSC) and F.
View Article and Find Full Text PDFPeerJ
January 2025
Plant Health Department, GAP Agricultural Research Institute, Şanlıurfa, Turkey.
This study evaluated the effectiveness of arbuscular mycorrhizal fungi (AMF) species, including (FM), (RI), (CE), and a Mycorrhizal mix (MM) comprising these three species, on pepper plants ( L.) inoculated with two isolates of (48- and 18-) and two isolates of mix (50-F. mixture and 147-F.
View Article and Find Full Text PDFFungal Biol
February 2025
Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus, Denmark. Electronic address:
Although a major share of postharvest losses of apples is due to fungal fruit rots, their timely detection is difficult in commercial bulk-storage rooms. Therefore, a method was developed to identify the volatile markers of fruit naturally infected by Phacidiopycnis washingtonensis, a common storage-rot fungus of Northern Europe, and North and South America. Potato dextrose agar, apple juice agar, and fruit of the apple cultivar 'Nicoter' were inoculated with P.
View Article and Find Full Text PDFJ Microbiol Methods
January 2025
Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Växtskyddsvägen 3, SE-234 56 Alnarp, Sweden. Electronic address:
In recent years, oxidoreductase enzymes such as laccases have received considerable attention for their ability to degrade and eliminate organic micropollutants from contaminated water in a process known as enzyme-based wastewater treatment. Thus, methods to produce high laccase activity in water are a point of focus, with white-rot fungi being highlighted as a tool in this context. This study, therefore, explored the applied approach of direct addition of mushroom spawn of the white-rot fungi Pleurotus ostreatus into water and its potential for laccase production under different conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!