Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Since the 1990s, drylands have been extensively converted to rice paddy fields on the former wetlands in the Sanjiang Plain of northeast China. However, the influence of this successiveland-use change from native wetlands to drylands to rice paddy fields on soil organic carbon (C) dynamics remains unexplored. Here, we compared the difference in soil organic C stock among native wetlands, drylands, and paddy fields, and then used a two-step acid hydrolysis approach to examine the effect of this land-use change on labile C I (LPI-C), labile C II (LPII-C), and recalcitrant C (RP-C) fractions at depths of 0-15 cm, 15-30 cm, and 30-50 cm.
Results: Soil organic C stock at a depth of 0-50 cm was reduced by 79% after the conversion of wetlands to drylands but increased by 24% when drylands were converted to paddy fields. Compared with wetlands, paddy fields had 74% lower soil organic C stock at a depth of 0-50 cm. The conversion of wetlands to drylands reduced the concentrations of LPI-C, LPII-C, and RP-C fractions at each soil depth. However, land-use change from drylands to paddy fields only increased the concentrations of LPI-C and LPII-C fractions at the 0-15 cm and 30-50 cm depths.
Conclusion: The conversion of drylands to paddy lands on former wetlands enhances the soil organic C stock by promoting labile C fraction accumulation, and labile C fractions are more sensitive to this successive land-use change than recalcitrant C fractions in the Sanjiang Plain of northeast China. © 2022 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.12171 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!