A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-efficiency organic solar cells processed from a real green solvent. | LitMetric

High-efficiency organic solar cells processed from a real green solvent.

Mater Horiz

Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.

Published: February 2023

The fabrication of organic solar cells (OSCs) depends heavily on the use of highly toxic chlorinated solvents, which are incompatible with industrial manufacturing. The reported alternative solvents such as non-halogenated aromatic hydrocarbons and cyclic ethers are also not really "green" according to the "Globally Harmonized System of Classification and Labelling of Chemicals" of the United Nations. Therefore, processing from real green solvents such as water, alcohols, or anisole will constitute a big breakthrough for OSCs. However, it is fundamentally challenging to obtain high-performance photovoltaic materials processable from these solvents. Herein, we propose the incorporation of a B-N covalent bond, which has a dipole moment of 1.84 Debye, into the conjugated backbone of polymer donors to fabricate high-efficiency OSCs from anisole, a real green and eco-compatible solvent recommended by the United Nations. Based on a newly developed B-N-based polymer, the OSCs with a record-high efficiency of 15.65% in the 0.04 cm device and 14.01% in the 1.10 cm device have thus been realized real green processing.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2mh01314bDOI Listing

Publication Analysis

Top Keywords

real green
16
organic solar
8
solar cells
8
united nations
8
high-efficiency organic
4
cells processed
4
real
4
processed real
4
green
4
green solvent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!