Direct amination of C-H or CC bonds using unprotected amino groups is very challenging, especially with earth abundant metal ions. Here we show that a bioinspired iron(II) complex catalyses the double amination of its dangling benzyl branch in the presence of hydroxylamine derivatives as the unprotected amine donor and that the replacement of the benzyl branch by a methyl group also allows the aziridination of styrene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cc04992a | DOI Listing |
ACS Omega
December 2024
Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China.
HCl-catalyzed -glycosylation was described herein for the convenient preparation of -heteroaryl -glycosides and polyhydroxylated alkanes with diaryl groups using hetereoaryl amines and unprotected sugars as starting materials. The reaction temperature and the amounts of aryl amines and HCl had significant effects on reactions. The method provided a highly efficient and environmentally friendly route for constructing -glycosides at low cost.
View Article and Find Full Text PDFOrg Biomol Chem
December 2024
Department of Chemistry, New York University, New York, New York 10003, USA.
We report the use of unprotected amino acids as submonomer reagents in the solid-phase synthesis of -substituted glycine peptoid oligomers. Subsequent coupling of an amine, alcohol, or thiol to the free carboxylate of the incorporated amino acid provides access to peptoids bearing amides, esters, and thioesters as side chain pendant groups and permits further elongation of the peptoid backbone. The palette of readily obtained building blocks suitable for solid-phase peptoid synthesis is substantially expanded through this protocol, further enhancing the chemical diversity and potential applications of sequence-specific peptoid oligomers.
View Article and Find Full Text PDFChem Sci
December 2024
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
1,2--Aryl furanosides are prevalent in nature and exhibit significant biological activities. The 1,2- configuration is less favorable in terms of stereoelectronic and steric effects, making the synthesis of this type of skeleton highly challenging. Traditional methods for the synthesis of 1,2--aryl furanosides usually require complicated protection manipulations, resulting in lengthy synthetic routes and low overall efficiency.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Department of Chemistry, Northwestern University, 2145N Sheridan Road, Evanston, IL, 60208, USA.
Here we present the first successful hydrotrifluoromethylation of unactivated olefins under electrochemical conditions. Commercially available trifluoromethyl thianthrenium salt (TT-CFBF , E=-0.85 V vs Fc/Fc) undergoes electrochemical reduction to generate CF radicals which add to olefins with exclusive chemoselectivity.
View Article and Find Full Text PDFChem Sci
September 2024
Department of Chemistry and Biochemistry, Baylor University One Bear Place 97348 Waco Texas 76798 USA
Semi-reductive transformations of esters remain an underdeveloped but valuable class of functional group interconversions. Here, we describe the development of a highly selective method for the interconversion of esters to imines, enamines, aldehydes or amines through an amine-intercepted zirconocene hydride (ZrH)-catalyzed reduction. This protocol employs an inexpensive zirconium catalyst in combination with hydrosilanes and simple unprotected amines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!