Artificial intelligence in veterinary medicine is an emerging field. Machine learning, a subfield of artificial intelligence, allows computer programs to analyze large imaging datasets and learn to perform tasks relevant to veterinary diagnostic imaging. This review summarizes the small, yet growing body of artificial intelligence literature in veterinary imaging, provides necessary background to understand these papers, and provides author commentary on the state of the field. To date, less than 40 peer-reviewed publications have utilized machine learning to perform imaging-associated tasks across multiple anatomic regions in veterinary clinical and biomedical research. Major challenges in this field include collection and cleaning of sufficient image data, selection of high-quality ground truth labels, formation of relationships between veterinary and machine learning professionals, and closure of the gap between academic uses of artificial intelligence and currently available commercial products. Further development of artificial intelligence has the potential to help meet the growing need for radiological services through applications in workflow, quality control, and image interpretation for both general practitioners and radiologists.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/vru.13163 | DOI Listing |
J Med Internet Res
January 2025
Department of Cardiology, Yonsei University College of Medicine, Seoul, Republic of Korea.
Background: Efficient emergency patient transport systems, which are crucial for delivering timely medical care to individuals in critical situations, face certain challenges. To address this, CONNECT-AI (CONnected Network for EMS Comprehensive Technical-Support using Artificial Intelligence), a novel digital platform, was introduced. This artificial intelligence (AI)-based network provides comprehensive technical support for the real-time sharing of medical information at the prehospital stage.
View Article and Find Full Text PDFJMIR Res Protoc
January 2025
Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
Background: Individuals with hearing impairments may face hindrances in health care assistance, which may significantly impact the prognosis and the incidence of complications and iatrogenic events. Therefore, the development of automatic communication systems to assist the interaction between this population and health care workers is paramount.
Objective: This study aims to systematically review the evidence on communication systems using human-computer interaction techniques developed for deaf people who communicate through sign language that are already in use or proposed for use in health care contexts and have been tested with human users or videos of human users.
J Phys Chem Lett
January 2025
Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.
Research on memristive devices to seamlessly integrate and replicate the dynamic behaviors of biological synapses will illuminate the mechanisms underlying parallel processing and information storage in the human brain, thereby affording novel insights for the advancement of artificial intelligence. Here, an artificial electric synapse is demonstrated on a one-step Mo-selenized MoSe memristor, having not only long-term stable resistive switching characteristics (reset 0.51 ± 0.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.
Purpose: The purpose of this study was to develop and validate a deep-learning model for noninvasive anemia detection, hemoglobin (Hb) level estimation, and identification of anemia-related retinal features using fundus images.
Methods: The dataset included 2265 participants aged 40 years and above from a population-based study in South India. The dataset included ocular and systemic clinical parameters, dilated retinal fundus images, and hematological data such as complete blood counts and Hb concentration levels.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!