Alzheimer's disease (AD) is a progressive neurological disease that worsens with time. The hallmark illnesses include extracellular senile plaques caused by β-amyloid protein deposition, neurofibrillary tangles caused by tau protein hyperphosphorylation, and neuronal loss accompanying glial cell hyperplasia. Noncoding RNAs are substantially implicated in related pathophysiology, according to mounting data. However, the function of these ncRNAs is mainly unclear. Circular RNAs (circRNAs) include many miRNA-binding sites (miRNA response elements, MREs), which operate as miRNA sponges or competing endogenous RNAs (ceRNAs). The purpose of this study was to look at the role of circular RNAs (circRNAs) and microRNAs (miRNAs) in Alzheimer's disease (AD) as possible biomarkers. The Gene Expression Omnibus (GEO) database was used to obtain an expression profile of Alzheimer's disease patients (GSE5281, GSE122603, GSE97760, GSE150693, GSE1297, and GSE161435). Through preliminary data deletion, 163 genes with significant differences, 156 miRNAs with significant differences, and 153 circRNAs with significant differences were identified. Then, 10 key genes, led by and , were identified by the mediation center algorithm, 34 miRNAs with obvious prognosis were identified by the cox regression model, and 16 key circRNAs were selected by the database. To develop competitive endogenous RNA (ceRNA) networks, hub circRNAs and mRNAs were used. Finally, GO analysis and clinical data verification of key genes were carried out. We discovered that a down-regulated circRNA (has_circ_002048) caused the increased expression of numerous miRNAs, which further inhibited the expression of a critical mRNA (), leading to Alzheimer's disease pathology. The findings of this work contribute to a better understanding of the circRNA-miRNA-mRNA regulating processes in Alzheimer's disease. Furthermore, the ncRNAs found here might become novel biomarkers and potential targets for the development of Alzheimer's drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9716081 | PMC |
http://dx.doi.org/10.3389/fgene.2022.1049786 | DOI Listing |
Chem Sci
January 2025
Department of Chemistry, Imperial College London Molecular Sciences Research Hub, 82 Wood Lane, White City Campus London W12 0BZ UK
The blood-brain-barrier prevents many imaging agents and therapeutics from being delivered to the brain that could fight central nervous system diseases such as Alzheimer's disease and strokes. However, techniques such as the use of stapled peptides or peptide shuttles may allow payloads through, with bioconjugation achieved bio-orthogonal tetrazine/norbornene click chemistry. A series of lanthanide-tetrazine probes have been synthesised herein which could be utilised in bio-orthogonal click chemistry with peptide-based delivery systems to deliver MRI agents through the blood-brain-barrier.
View Article and Find Full Text PDFLancet Reg Health Eur
March 2025
Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France.
Background: Ultra-processed food (UPF) consumption has been linked with higher risk of mortality. This multi-centre study investigated associations between food intake by degree of processing, using the Nova classification, and all-cause and cause-specific mortality.
Methods: This study analyzed data from the European Prospective Investigation into Cancer and Nutrition.
Background: The number of individuals living alone with dementia is increasing throughout the world, and they have unique needs that are poorly understood. The aim of this integrative review was to understand the characteristics, needs, and perspectives of individuals living alone with dementia as well as the available community resources to guide future research and clinical practice.
Methods: Electronic (PubMed, CINAHL, and PsycINFO) and manual searches were utilized to identify articles using MeSH terms.
RSC Med Chem
January 2025
Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia
In this work, we developed potential multifunctional agents to combat Alzheimer's disease. According to our strategy, fragments of tacrine and donepezil were merged in a unique hybrid structure. After successfully synthesizing the compounds, they were evaluated for their dual AChE/BuChE inhibitor potential and neuroprotector response using a glutamate-induced excitotoxicity model.
View Article and Find Full Text PDFToxicol Rep
June 2025
Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054, India.
Alzheimer's Disease (AD) is one of the leading neurodegenerative diseases that affect the human population. Several hypotheses are in the pipeline to establish the commencement of this disease; however, the amyloid hypothesis is one of the most widely accepted ones. Amyloid plaques are rich in Amyloid Beta (Aβ) proteins, which are found in the brains of Alzheimer's patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!