Ionic liquids (ILs) are efficient media for the liquid-phase sulfuric acid reaction. Under mild situations, the reaction of HS with CH in ILs happens extremely quick and virtually complete, resulting in liquid sulfuric acid (HSO). 1-hexyl-3-methylimidazolium chloride ([hmim][Cl]) ILs were formerly the most effective at capturing and converting HS. It can convert HS to HSO with a proportion of up to 96%. This study aimed to develop cutting-edge techniques and assess their applicability for different acidic gas capacities and HS amounts by considering three sustainability metrics which are people (safety), planet (ecological), and profit. Then, to maximize profit while lowering the global warming potential (GWP), fire explosion damage index (FEDI), and toxicity damage index (TDI), a multiobjective optimization (MOO) case was performed. The trade-off between economic, environmental, and safety performance was expressed through Pareto-optimal solutions. The improved wet sulfuric acid (WSA)-based IL method was safer (lower fire and explosion damage index), ecologically friendly (lower GWP), and portable. The findings indicate that the improved WSA-based on IL gives the optimum results compared to conventional WSA processes, such as the profit of 5688$/h increased from 1896$/h, the GWP of 0.0138-ton CO-eq decreased from 0.0275-ton CO-eq, the TDI of 6.72 decreased from 13.44, and the FEDI of 6.18 decreased from 20.6, respectively. This discovery opens the door to a viable strategy for capturing and converting HS from an acid gas stream.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9713871PMC
http://dx.doi.org/10.1021/acsomega.2c03066DOI Listing

Publication Analysis

Top Keywords

sulfuric acid
12
multiobjective optimization
8
improved wet
8
wet sulfuric
8
capturing converting
8
fire explosion
8
explosion damage
8
optimization sustainability
4
sustainability assessment
4
assessment improved
4

Similar Publications

The unintended microbiological production of hydrogen sulphide (HS) poses a significant challenge in engineered systems, including sewage treatment plants, landfills and aquaculture systems. Although sulphur-rich amino acids and other substrates conducive to non-sulphate-based HS production are frequently present, the capacity and potential of various microorganisms to perform sulphate-free HS production remain unclear. In this study, we identify the identity, activity and genomic characteristics of bacteria that degrade cysteine to produce HS in anaerobic enrichment bioreactors seeded with material from aquaculture systems.

View Article and Find Full Text PDF

Sn(SO)·2HO from synchrotron powder data.

IUCrdata

December 2024

Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1033, NO-0315 Oslo, Norway.

Tin(IV) sulfate dihydrate, Sn(SO)·2HO, was prepared in a reflux of sulfuric acid under oxidizing conditions. Its crystal structure was determined from powder synchrotron X-ray diffraction data and is constructed of (100) layers of [SnO(HO)] octa-hedra (point group symmetry 1) corner-connected by sulfate tetra-hedra. Hydrogen bonds of moderate strength between the water mol-ecules and sulfate O atoms hold the layers together.

View Article and Find Full Text PDF

In vitro evaluation of anti-inflammatory, anti-oxidant activity of pomegranate peel extract mediated calcium sulfate nano particles.

Med J Malaysia

January 2025

Department of Research, Meenakshi Academy of Higher Education & Research-MAHER, Chennai.

Introduction: Pomegranate peel is considered a reservoir of biologically active compounds, the presence of which provides anti-inflammatory and antioxidant properties to peel extracts. Calcium sulfate is considered an ideal boneaugmenting material, and in the present study, pomegranate peel extract-mediated calcium sulfate nano particles (PPE CaSo4 NPs) were synthesized and their anti-inflammatory and antioxidant properties were evaluated. This study aimed to evaluate the biological effects of PPE CaSo4 NPs, with a focus on their anti-inflammatory and antioxidant properties.

View Article and Find Full Text PDF

Harnessing of Sunflower Stalks by Hydrolysis and Fermentation with to Produce Biofuels.

Polymers (Basel)

December 2024

Department of Chemical, Environmental and Materials Engineering, Higher Polytechnical School of University of Jaén, Avda. de la Universidad s/n, 23700 Linares, Spain.

A sequential valorization process of sunflower stalks was carried out using nitric acid (0.1-2 mol dm) as a hydrolytic agent and fermenting the hydrolysate of higher sugar concentration in the presence of the non-conventional yeast . Values reached for ethanol yield (0.

View Article and Find Full Text PDF

Hydroxylated-Benz[a]anthracenes Induce Two Apoptosis-Related Gene Expressions in the Liver of the Nibbler Fish .

Toxics

December 2024

Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan.

Polycyclic aromatic hydrocarbons (PAHs) are known to have toxic effects on fish. In this study, we examined the effects of benz[a]anthracene (BaA), a type of PAH, on fish liver metabolism. Nibbler fish () were intraperitoneally injected with BaA (10 ng/g body weight) four times over a 10-day period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!