A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genomic selection with fixed-effect markers improves the prediction accuracy for Capsaicinoid contents in . | LitMetric

Genomic selection with fixed-effect markers improves the prediction accuracy for Capsaicinoid contents in .

Hortic Res

Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.

Published: September 2022

Capsaicinoids provide chili peppers ( spp.) with their characteristic pungency. Several structural and transcription factor genes are known to control capsaicinoid contents in pepper. However, many other genes also regulating capsaicinoid contents remain unknown, making it difficult to develop pepper cultivars with different levels of capsaicinoids. Genomic selection (GS) uses genome-wide random markers (including many in undiscovered genes) for a trait to improve selection efficiency. In this study, we predicted the capsaicinoid contents of pepper breeding lines using several GS models trained with genotypic and phenotypic data from a training population. We used a core collection of 351 accessions and 96 breeding lines as training and testing populations, respectively. To obtain the optimal number of single nucleotide polymorphism (SNP) markers for GS, we tested various numbers of genome-wide SNP markers based on linkage disequilibrium. We obtained the highest mean prediction accuracy (0.550) for different models using 3294 SNP markers. Using this marker set, we conducted GWAS and selected 25 markers that were associated with capsaicinoid biosynthesis genes and quantitative trait loci for capsaicinoid contents. Finally, to develop more accurate prediction models, we obtained SNP markers from GWAS as fixed-effect markers for GS, where 3294 genome-wide SNPs were employed. When four to five fixed-effect markers from GWAS were used as fixed effects, the RKHS and RR-BLUP models showed accuracies of 0.696 and 0.689, respectively. Our results lay the foundation for developing pepper cultivars with various capsaicinoid levels using GS for capsaicinoid contents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714256PMC
http://dx.doi.org/10.1093/hr/uhac204DOI Listing

Publication Analysis

Top Keywords

capsaicinoid contents
24
snp markers
16
fixed-effect markers
12
markers
9
genomic selection
8
prediction accuracy
8
capsaicinoid
8
contents pepper
8
pepper cultivars
8
breeding lines
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!