Downy mildew, commercially the most important disease of spinach, is caused by the obligate oomycete . In the past two decades, new pathogen races have repeatedly overcome the resistance used in newly released cultivars, urging the need for more durable resistance. Commercial spinach cultivars are bred with major R genes to impart resistance to downy mildew pathogens and are effective against some pathogen races/isolates. This work aimed to evaluate the worldwide USDA spinach germplasm collections and commercial cultivars for resistance to downy mildew pathogen in the field condition under natural inoculum pressure and conduct genome wide association analysis (GWAS) to identify resistance-associated genomic regions (alleles). Another objective was to evaluate the prediction accuracy (PA) using several genomic prediction (GP) methods to assess the potential implementation of genomic selection (GS) to improve spinach breeding for resistance to downy mildew pathogen. More than four hundred diverse spinach genotypes comprising USDA germplasm accessions and commercial cultivars were evaluated for resistance to downy mildew pathogen between 2017-2019 in Salinas Valley, California and Yuma, Arizona. GWAS was performed using single nucleotide polymorphism (SNP) markers identified via whole genome resequencing (WGR) in GAPIT and TASSEL programs; detected 14, 12, 5, and 10 significantly associated SNP markers with the resistance from four tested environments, respectively; and the QTL alleles were detected at the previously reported region of chromosome 3 in three of the four experiments. In parallel, PA was assessed using six GP models and seven unique marker datasets for field resistance to downy mildew pathogen across four tested environments. The results suggest the suitability of GS to improve field resistance to downy mildew pathogen. The QTL, SNP markers, and PA estimates provide new information in spinach breeding to select resistant plants and breeding lines through marker-assisted selection (MAS) and GS, eventually helping to accumulate beneficial alleles for durable disease resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715576PMC
http://dx.doi.org/10.1093/hr/uhac205DOI Listing

Publication Analysis

Top Keywords

downy mildew
32
resistance downy
24
mildew pathogen
20
field resistance
12
snp markers
12
resistance
11
spinach germplasm
8
downy
8
mildew
8
genomic selection
8

Similar Publications

Grapevines ( L.) are one of the most economically relevant crops worldwide, yet they are highly vulnerable to various diseases, causing substantial economic losses for winegrowers. This systematic review evaluates the application of remote sensing and proximal tools for vineyard disease detection, addressing current capabilities, gaps, and future directions in sensor-based field monitoring of grapevine diseases.

View Article and Find Full Text PDF

Traditional assessments of grapevine susceptibility to grapevine downy mildew (GDM) caused by rely on the visual evaluation of leaf symptoms. In this study, we used a well-established quantitative real-time PCR TaqMan assay (real-time PCR) to quantify the number of infecting 12 grapevine cultivars under controlled conditions. The molecular disease index (MDI), derived from molecular detection methods, reflects the relative abundance of pathogens in plant tissues during the latent infection phase.

View Article and Find Full Text PDF

, commonly known as stock, is a flowering plant species in the Brassicaceae popularly used as a cut flower due to its fragrant, long-lasting blooms. In September 2023, stock 'Iron White' plants displaying symptoms and signs of downy mildew were observed within a high tunnel in a cut flower farm in Franklin Co., OH.

View Article and Find Full Text PDF

Fluorescence In Situ Hybridization Protocol for Visualization of Oomycetes In Vitro and In Planta.

Methods Mol Biol

December 2024

United States Department of Agriculture, Agricultural Research Service, Foreign Disease/Weed Science Research Unit, Frederick, MD, USA.

Fluorescence in situ hybridization enables the visualization of organisms in the environment without having to culture them. Here, we describe a FISH protocol to visualize oomycete structures (mycelia, sporangiophores, sporangia, and oospores) directly as well as from colonized plant material. The protocol utilizes organic compounds with low toxicities and does not require a permeabilization step.

View Article and Find Full Text PDF

Background: Priming plants with natural products is extensively studied in the agricultural field to reduce the use of synthetic and copper-based pesticides. Previous studies have shown that Oregano essential oil vapour (OEOV) is an effective priming agent against downy mildew (DM) in grapevine (Vitis vinifera L. cv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!