Bacterial extracellular membrane vesicles (MV) are potent mediators of microbe-host signals, and they are not only important in host-pathogen interactions but also for the interactions between mutualistic bacteria and their hosts. Studies of MV derived from probiotics could enhance the understanding of these universal signal entities, and here we have studied MV derived from DSM 17938 and BG-R46. The production of MV increased with cultivation time and after oxygen stress. Mass spectrometry-based proteomics analyses revealed that the MV carried a large number of bacterial cell surface proteins, several predicted to be involved in host-bacteria interactions. A 5'-nucleotidase, which catalyze the conversion of AMP into the signal molecule adenosine, was one of these and analysis of enzymatic activity showed that BG-R46 derived MV exhibited the highest activity. We also detected the TLR2 activator lipoteichoic acid on the MV. In models for host interactions, we first observed that MV were internalized by Caco-2/HT29-MTX epithelial cells, and in a dose-dependent manner decreased the leakage caused by enterotoxigenic by up to 65%. Furthermore, the MV upregulated IL-1β and IL-6 from peripheral blood mononuclear cells (PBMC), but also dampened IFN-γ and TNF-α responses in PBMC challenged with . Finally, we showed that MV from the strains have an antagonistic effect on the pain receptor transient receptor potential vanilloid 1 in a model with primary dorsal root ganglion cells from rats. In summary, we have shown that these mobile nanometer scale MV reproduce several biological effects of cells and that the production parameters and selection of strain have an impact on the activity of the MV. This could potentially provide key information for development of innovative and more efficient probiotic products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712456PMC
http://dx.doi.org/10.3389/fmicb.2022.1032202DOI Listing

Publication Analysis

Top Keywords

extracellular membrane
8
membrane vesicles
8
vesicles strengthen
4
strengthen intestinal
4
intestinal epithelial
4
epithelial integrity
4
integrity modulate
4
modulate cytokine
4
cytokine responses
4
responses antagonize
4

Similar Publications

The role of laminins in cancer pathobiology: a comprehensive review.

J Transl Med

January 2025

Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), Darwin, 3. Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.

Laminins (LMs) are a family of heterotrimeric glycoproteins that form the structural foundation of basement membranes (BM). By acting as molecular bridges between cells and the extracellular matrix (ECM) through integrins and other surface receptors, they regulate key cellular signals that influence cell behavior and tissue architecture. Despite their physiological importance, our understanding of the role of LMs in cancer pathobiology remains fragmented.

View Article and Find Full Text PDF

TGR5 attenuates DOCA-salt hypertension through regulating histone H3K4 methylation of ENaC in the kidney.

Metabolism

January 2025

Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. Electronic address:

Epithelial sodium channel (ENaC), located in the collecting duct principal cells of the kidney, is responsible for the reabsorption of sodium and plays a critical role in the regulation of extracellular fluid volume and consequently blood pressure. The G protein-coupled bile acid receptor (TGR5) is a membrane receptor mediating effects of bile acid and is implicated in kidney diseases. The current study aims to investigate whether TGR5 activation in the kidney regulated ENaC expression and potential mechanism.

View Article and Find Full Text PDF

Eliminating osmotic stress during cryoprotectant loading: A mathematical investigation of solute-solvent transport.

Cryobiology

January 2025

Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States of America. Electronic address:

Osmotic stresses during cryoprotectant loading induce changes in cellular volume, leading to membrane damage or even cell death. Appropriate model-guided mitigation of these osmotic gradients during cryoprotectant loading is currently lacking, but would be highly beneficial in reducing viability loss during the loading process. To address this need, we reformulate the two-parameter formalism described by Jacobs and Stewart for cryoprotectant loading under the constraint of constant cell volume.

View Article and Find Full Text PDF

Molecular basis of conjugation-mediated DNA transfer by gram-negative bacteria.

Curr Opin Struct Biol

January 2025

Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, United Kingdom; Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, WC1E 6BT, United Kingdom. Electronic address:

Bacterial conjugation is the unidirectional transfer of DNA (often plasmids, but also other mobile genetic elements, or even entire genomes), from a donor cell to a recipient cell. In Gram-negative bacteria, it requires the formation of three complexes in the donor cell: i-a large, double-membrane-embedded transport machinery called the Type IV Secretion System (T4SS), ii-a long extracellular tube, the conjugative pilus, and iii-a DNA-processing machinery termed the relaxosome. While knowledge has expanded regarding molecular events in the donor cell, very little is known about the machinery involved in DNA transfer into the recipient cell.

View Article and Find Full Text PDF

The elongation of tissues and organs is important for proper morphogenesis in animal development. In Drosophila ovaries, the elongation of egg chambers involves aligned Collagen IV fiber-like structures, a gradient of extracellular matrix stiffness and actin-based protrusion-driven collective cell migration, leading to the rotation of the egg chamber. Egg chamber elongation and rotation depend on the atypical cadherin Fat2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!