A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine learning models for predicting risk of depression in Korean college students: Identifying family and individual factors. | LitMetric

Machine learning models for predicting risk of depression in Korean college students: Identifying family and individual factors.

Front Public Health

Department of Medical Life Sciences, School of Medicine, The Catholic University of Korea, Seoul, South Korea.

Published: December 2022

Background: Depression is one of the most prevalent mental illnesses among college students worldwide. Using the family triad dataset, this study investigated machine learning (ML) models to predict the risk of depression in college students and identify important family and individual factors.

Methods: This study predicted college students at risk of depression and identified significant family and individual factors in 171 family data (171 fathers, mothers, and college students). The prediction accuracy of three ML models, sparse logistic regression (SLR), support vector machine (SVM), and random forest (RF), was compared.

Results: The three ML models showed excellent prediction capabilities. The RF model showed the best performance. It revealed five significant factors responsible for depression: self-perceived mental health of college students, neuroticism, fearful-avoidant attachment, family cohesion, and mother's depression. Additionally, the logistic regression model identified five factors responsible for depression: the severity of cancer in the father, the severity of respiratory diseases in the mother, the self-perceived mental health of college students, conscientiousness, and neuroticism.

Discussion: These findings demonstrated the ability of ML models to accurately predict the risk of depression and identify family and individual factors related to depression among Korean college students. With recent developments and ML applications, our study can improve intelligent mental healthcare systems to detect early depressive symptoms and increase access to mental health services.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714606PMC
http://dx.doi.org/10.3389/fpubh.2022.1023010DOI Listing

Publication Analysis

Top Keywords

college students
32
risk depression
16
family individual
16
individual factors
12
mental health
12
depression
9
machine learning
8
learning models
8
depression korean
8
college
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!