AI Article Synopsis

  • Potatoes are a vital food source globally, but their production is threatened by late blight, a disease caused by a pathogen.
  • PAMP-triggered immunity (PTI) offers a potential durable resistance against this disease, yet our understanding of the specific proteins involved in this immune response is limited.
  • The study utilized SWATH-MS to analyze the proteome changes in potato leaves after PAMP induction, identifying 4,401 proteins and discovering six novel proteins that play a role in PTI, enhancing our knowledge of how potatoes resist late blight.

Article Abstract

Potato is the most important non-grain food in the world, while late blight caused by seriously threatens the production of potato. Since pathogen-associated molecular patterns (PAMPs) are relatively conserved, PAMP-triggered immunity (PTI) can provide durable resistance to late blight for potato. However, knowledge of the regulatory mechanisms of PTI against oomycete pathogens at protein levels remains limited due to the small number of identified proteins. In the present work, changes in the proteome profile of leaves upon PAMP induction were examined using the SWATH-MS (sequential windowed acquisition of all theoretical mass spectra) approach, which provides quantification of protein abundances and large-scale identification of PTI-related proteins. A total of 4401 proteins have been identified, of which 1429 proteins were differentially expressed at least at one time point of 8, 12, 24 and 48 h after PAMP induction, compared with the expression at 0 h when immediately after PAMP induction. They were further analyzed by expression clustering and gene ontology (GO) enrichment analysis. Through functional verification, six novel DEPs of 19 candidates were proved to be involved in PTI responses, including mitochondrial phosphate carrier protein (MPT) 3, vesicle-associated membrane protein (VAMP) 714, lysophospholipase (LysoPL) 2, ascorbate peroxidase (APX) 1, heat shock 70 kDa protein (HSP) 2 and peptidyl-prolyl cis-trans isomerase FKBP (FKBP) 15-1. Taken together, the time course approach and the resulting large-scale proteomic analyses have enlarged our understanding of PTI mechanisms and provided a valuable resource for the discovery of complex protein networks involved in the resistance response of potato to late blight.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715588PMC
http://dx.doi.org/10.3389/fpls.2022.1036637DOI Listing

Publication Analysis

Top Keywords

late blight
16
pamp induction
12
potato late
8
protein
6
proteins
5
potato
5
swath-ms based
4
based quantitative
4
quantitative proteomics
4
proteomics analysis
4

Similar Publications

Background: Identifying robust integrated pest management (IPM) strategies requires the testing of multiple factors at the same time and assessing their combined effects e.g., on disease control.

View Article and Find Full Text PDF

NtLPA1 overexpression regulates the growth of tobacco and enhances resistance to blight.

Transgenic Res

January 2025

Shaanxi Tobacco Company Baoji City Company, Baoji, 721000, Shaanxi, China.

The involvement of Loose Plant Architecture 1 (LPA1) in regulating plant growth and leaf angle has been previously demonstrated. However, the fundamental genetic background remains unidentified. To further understand the tissue expression profile of the NtLPA1 gene, an overexpression vector (pBI121-NtLPA1) was developed and employed to modify tobacco using the leaf disc method genetically.

View Article and Find Full Text PDF

Identification and Functional Analysis of the Gene Conferring Resistance to Late Blight () in Tomato.

Plants (Basel)

December 2024

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Late blight is a destructive disease affecting tomato production. The identification and characterization of resistance (R) genes are critical for the breeding of late blight-resistant cultivars. The incompletely dominant gene confers resistance against the race T of in tomatoes.

View Article and Find Full Text PDF

Late blight, caused by , is a devastating disease of potato. Our previous work illustrated that scopolamine, the main bioactive substance of extract, exerts direct inhibitory effects on , but it is unclear whether scopolamine and extract can boost resistance to late blight in potato. In this study, .

View Article and Find Full Text PDF

Potato late blight leaf detection in complex environments.

Sci Rep

December 2024

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650504, China.

Potato late blight is a common disease affecting crops worldwide. To help detect this disease in complex environments, an improved YOLOv5 algorithm is proposed. First, ShuffleNetV2 is used as the backbone network to reduce the number of parameters and computational load, making the model more lightweight.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!