Significance: imaging and electrophysiology are powerful tools to explore neuronal function that each offer unique complementary information with advantages and limitations. Capturing both data types from the same neural population in the freely moving animal would allow researchers to take advantage of the capabilities of both modalities and further understand how they relate to each other.

Aim: Here, we present a head-mounted neural implant suitable for two-photon imaging of neuronal activity with simultaneous extracellular electrical recording in head-fixed or fiber-coupled freely moving animals.

Approach: A gradient refractive index (GRIN) lens-based head-mounted neural implant with extracellular electrical recording provided by tetrodes on the periphery of the GRIN lens was chronically implanted. The design of the neural implant allows for recording from head-fixed animals, as well as freely moving animals by coupling the imaging system to a coherent imaging fiber bundle.

Results: We demonstrate simultaneous two-photon imaging of GCaMP and extracellular electrophysiology of neural activity in awake head-fixed and freely moving mice. Using the collected information, we perform correlation analysis to reveal positive correlation between optical and local field potential recordings.

Conclusion: Simultaneously recording neural activity using both optical and electrical methods provides complementary information from each modality. Designs that can provide such bi-modal recording in freely moving animals allow for the investigation of neural activity underlying a broader range of behavioral paradigms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9713693PMC
http://dx.doi.org/10.1117/1.NPh.9.4.045009DOI Listing

Publication Analysis

Top Keywords

freely moving
24
neural implant
16
two-photon imaging
12
moving animals
12
neural activity
12
simultaneous two-photon
8
extracellular electrophysiology
8
head-mounted neural
8
extracellular electrical
8
electrical recording
8

Similar Publications

Alkylated polycyclic aromatic hydrocarbons (PAHs) are abundant constituents of many PAH mixtures and contribute to risk at contaminated sites. Despite their abundance, the movement of alkylated PAHs remains understudied relative to unsubstituted PAHs. In the present study, passive sampling devices were deployed in the air, water, and sediments at 11 locations across multiple seasons to capture spatial and temporal variability in the abundance and movement of alkylated PAHs at a Brownsfield creosote site in Oregon, USA.

View Article and Find Full Text PDF

In vivo calcium imaging in freely moving rats using miniscopes provides valuable information about the neural mechanisms of behavior in real time. A gradient index (GRIN) lens can be implanted in deep brain structures to relay activity from single neurons. While such procedures have been successful in mice, few reports provide detailed procedures for successful surgery and long-term imaging in rats, which are better suited for studying complex human behaviors.

View Article and Find Full Text PDF

Monitoring dynamic neurochemical signals in the brain of free-moving animals remains great challenging in biocompatibility and direct implantation capability of current electrodes. Here we created a self-supporting polymer-based flexible microelectrode (rGPF) with sufficient bending stiffness for direct brain implantation without extra devices, but demonstrating low Young's modulus with remarkable biocompatibility and minimal position shifts. Meanwhile, screening by density functional theory (DFT) calculation, we designed and synthesized specific ligands targeting Mg2+ and Ca2+, and constructed Mg-E and Ca-E sensors with high selectivity, good reversibility, and fast response time, successfully monitoring Mg2+ and Ca2+ in vivo up to 90 days.

View Article and Find Full Text PDF

The current understanding of primate natural action organization derives from laboratory experiments in restrained contexts (RCs) under the assumption that this knowledge generalizes to freely moving contexts (FMCs). In this work, we developed a neurobehavioral platform to enable wireless recording of the same premotor neurons in both RCs and FMCs. Neurons often encoded the same hand and mouth actions differently in RCs and FMCs.

View Article and Find Full Text PDF

NeuroCarto: A Toolkit for Building Custom Read-out Channel Maps for High Electrode-count Neural Probes.

Neuroinformatics

January 2025

Neuro Electronics Res. Flanders (NERF), Heverlee, 3001, Belgium.

Neuropixels probes contain thousands of electrodes across one or more shanks and are sufficiently small to allow chronic recording of neural activity in freely behaving small animals. However, the joint increase in the number of electrodes and miniaturization of the probe package has led to a compromise in which groups of electrodes share a single read-out channel and only a fraction of the electrodes can be read out at any given time. Experimenters then face the challenge of selecting a subset of electrodes (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!