Cascading impacts of global metal mining on climate change and human health caused by COVID-19 pandemic.

Resour Conserv Recycl

Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.

Published: March 2023

The coronavirus disease 2019 (COVID-19) pandemic has significantly disrupted global metal mining and associated supply chains. Here we analyse the cascading effects of the metal mining disruption associated with the COVID-19 pandemic on the economy, climate change, and human health. We find that the pandemic reduced global metal mining by 10-20% in 2020. This reduction subsequently led to losses in global economic output of approximately 117 billion US dollars, reduced CO emissions by approximately 33 million tonnes (exceeding Hungary's emissions in 2015), and reduced human health damage by 78,192 disability-adjusted life years. In particular, copper and iron mining made the most significant contribution to these effects. China and rest-of-the-world America were the most affected. The cascading effects of the metal mining disruption associated with the pandemic on the economy, climate change, and human health should be simultaneously considered in designing green economic stimulus policies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705201PMC
http://dx.doi.org/10.1016/j.resconrec.2022.106800DOI Listing

Publication Analysis

Top Keywords

metal mining
20
human health
16
global metal
12
climate change
12
change human
12
covid-19 pandemic
12
cascading effects
8
effects metal
8
mining disruption
8
disruption associated
8

Similar Publications

Recent progress in electrochemical recycling of waste NdFeB magnets.

Chem Commun (Camb)

January 2025

School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.

Neodymium iron boron (NdFeB) magnets are critical components in green energy technologies and have received increasing attention due to the limited availability of the raw materials, specifically rare earth elements (REEs). The supply risks associated with primary mining of RE ores, which have significant environmental impacts, underscore the necessity for recycling RE secondary resources. Waste NdFeB magnets, generated during manufacturing processes and recovered from end-of-life products, represent valuable RE secondary resources.

View Article and Find Full Text PDF

Global nickel demand is projected to double by 2050 to support low-carbon technologies and renewable energy production. However, biomass carbon emissions from clearing vegetation for nickel mining are rarely included in corporate sustainability reports or considered in mineral sourcing decisions. Here, we compiled data for 481 nickel mines and undeveloped deposits to show that the footprint of nickel mining could be 4 to 500 times greater than previously reported (depending on the mine site), and thus the environmental impacts of nickel products, including batteries, have been underestimated to date.

View Article and Find Full Text PDF

The indispensability of biometals nickel, copper, and selenium in pharmaceutical, agricultural, and other industrial applications, coupled with their release from mining processes, has made them potent environmental contaminants, especially when present in aquatic ecosystems at levels above the essential range. The toxicity of these biometals in fish embryogenesis, including their toxicity levels, was studied using medaka embryos. Test solutions (0.

View Article and Find Full Text PDF

PbSO reaction mechanism in oxygen and reduction atmospheres during co-smelting process with primary lead material.

Waste Manag

January 2025

School of Metallurgy and Environment, Central South University, Changsha 410083 China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083 China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083 China. Electronic address:

At present, lead-containing wastes have increasingly become the raw materials together with primary lead concentrate for lead production to meet the ever-increasing lead demand market. PbSO is the dominant component in the lead-containing wastes, nevertheless, its reaction behavior during lead smelting is not sufficiently investigated. This study investigated PbSO decomposition behaviors and phase transformation mechanisms at oxidizing and reductive atmospheres and various gas flow rates.

View Article and Find Full Text PDF

Piezochromic Luminescence of Pyrene Derivatives Polymorphism around Excimer Forming Processs.

Chemistry

January 2025

Northeastern University, Department of Materials Physics and Chemistry, No.11, Wenhua Road, Lane 3,Heping District, 110819, Shenyang, CHINA.

Pyrene aggregates, as classic luminescent materials, are of great interest from a scientific viewpoint owing to the development of optoelectronic materials. In this study, we designed a compound 1,4,5-triphenyl-2-(pyren-1-yl)-4,5-dihydro-1H-imidazole (IM-PY) which was achieved with two crystalline polymorphs (IMPY-G and IMPY-B). They exhibit the green emission and the blue emission, respectively, both with pyrene serving as the luminescent core.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!