We show that inner composition alignment networks derived for financial time-series data, studied in response to worldwide lockdown imposed in response to COVID-19 situation, show distinct patterns before, during and after lockdown phase. It is observed that significant couplings between companies as captured by inner composition alignment between time series, reduced considerably across the globe during lockdown and post-lockdown recovery period. The study of global community structure of the networks show that factions of companies emerge during recovery phase, with strong coupling within the members of the faction group, a trend which was absent before lockdown period. The study of strongly connected components of the networks further show that market has fragmented in response to COVID-19 situation. We find that most central firms as characterized by in-degree, out-degree and betweenness centralities belong to Chinese and Japanese economies, indicating a role played by these organizations in financial information propagation across the globe. We further observe that recovery phase of the lockdown period is strongly influenced by financial sector, which is one of the main result of this study. It is also observed that two different group of companies, which may not be co-moving, emerge across economies during COVID-19. We further notice that many companies in US and European economy tend to shield themselves from local influences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707026 | PMC |
http://dx.doi.org/10.1016/j.physa.2022.128341 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!