Background: Multiple treatment options at glioblastoma progression exist, including reintervention, reirradiation, additional systemic therapy, and novel strategies. No alternative has been proven to be superior in terms of postprogression survival (PPS). A second surgery has shown conflicting evidence in the literature regarding its prognostic impact, possibly affected by selection bias, and might benefit a sparse subset of patients with recurrent glioblastoma. The present study aims to determine the prognostic influence of salvage procedures in a cohort of patients treated in the same institution over 15 years.
Methods: Three hundred and fifty patients with confirmed primary glioblastoma diagnosed and treated between 2005 and 2019 were selected. To examine the role of reoperation, we intended to create comparable groups, previously excluding all diagnostic biopsies and patients who were not actively treated after the first surgery or at disease progression. Uni- and multivariate Cox proportional hazards regression models were employed, considering reintervention as a time-fixed or time-dependent covariate. The endpoints of the study were overall survival (OS) and PPS.
Results: At progression, 33 patients received a second surgery and 84 were treated with chemotherapy only. Clinical variables were similar among groups. OS, but not PPS, was superior in the reintervention group. Treatment modality had no impact in our multivariate Cox regression models considering OS or PPS as the endpoint.
Conclusions: The association of reoperation with improved prognosis in recurrent glioblastoma is unclear and may be influenced by selection bias. Regardless of our selective indications and high gross total resection rates in second procedures, we could not observe a survival advantage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9721080 | PMC |
http://dx.doi.org/10.1186/s12957-022-02852-3 | DOI Listing |
Sci China Life Sci
January 2025
Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
The infiltration of glioblastoma multiforme (GBM) is predominantly characterized by diffuse spread, contributing significantly to therapy resistance and recurrence of GBM. In this study, we reveal that microtubule deacetylation, mediated through the downregulation of fibronectin type III and SPRY domain-containing 1 (FSD1), plays a pivotal role in promoting GBM diffuse infiltration. FSD1 directly interacts with histone deacetylase 6 (HDAC6) at its second catalytic domain, thereby impeding its deacetylase activity on α-tubulin and preventing microtubule deacetylation and depolymerization.
View Article and Find Full Text PDFNeuro Oncol
January 2025
Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
Cancers (Basel)
January 2025
Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary.
Glioblastoma, the most common and aggressive primary brain tumor in adults, presents a formidable challenge due to its rapid progression, treatment resistance, and poor survival outcomes. Standard care typically involves maximal safe surgical resection, followed by fractionated external beam radiation therapy and concurrent temozolomide chemotherapy. Despite these interventions, median survival remains approximately 12-15 months, with a five-year survival rate below 10%.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Medical Oncology, Ege University Medical Faculty, Izmir 35040, Turkey.
Background/objectives: In the REGOMA trial, regorafenib demonstrated an overall survival advantage over lomustine, and it has become a recommended treatment for recurrent glioblastoma in guidelines. This study aimed to evaluate the effectiveness and safety of regorafenib as a third-line treatment for patients with recurrent glioblastoma who progressed while taking bevacizumab-based therapy.
Methods: This retrospective, multicenter study in Turkey included 65 patients treated between 2021 and 2023 across 19 oncology centers.
Molecules
January 2025
Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil.
Glioblastomas (GBM) are malignant tumours with poor prognosis. Treatment involves chemotherapy and/or radiotherapy; however, there is currently no standard treatment for recurrence, and prognosis remains unfavourable. Inflammatory mediators and microRNAs (miRNAs) influence the aggressiveness of GBM, being involved in the communication with the cells of the tumour parenchyma, including microglia/macrophages, and maintaining an immunosuppressive microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!