The outer membrane (OM) of Gram-negative bacteria functions as an essential barrier and is characterized by an asymmetric bilayer with lipopolysaccharide (LPS) in the outer leaflet. The enzyme LpxC catalyzes the first committed step in LPS biosynthesis. It plays a critical role in maintaining the balance between LPS and phospholipids (PL), which are both derived from the same biosynthetic precursor. The essential inner membrane proteins YejM (PbgA, LapC), LapB (YciM), and the protease FtsH are known to account for optimal LpxC levels, but the mechanistic details are poorly understood. LapB is thought to be a bi-functional protein serving as an adaptor for FtsH-mediated turnover of LpxC and acting as a scaffold in the coordination of LPS biosynthesis. Here, we provide experimental evidence for the physical interaction of LapB with proteins at the biosynthetic node from where the LPS and PL biosynthesis pathways diverge. By a total of four in vivo and in vitro assays, we demonstrate protein-protein interactions between LapB and the LPS biosynthesis enzymes LpxA, LpxC, and LpxD, between LapB and YejM, the anti-adaptor protein regulating LapB activity, and between LapB and FabZ, the first PL biosynthesis enzyme. Moreover, we uncovered a new adaptor function of LapB in destabilizing not only LpxC but also LpxD. Overall, our study shows that LapB is a multi-functional protein that serves as a protein-protein interaction hub for key enzymes in LPS and PL biogenesis presumably by virtue of multiple tetratricopeptide repeat (TPR) motifs in its cytoplasmic C-terminal region.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mmi.15005DOI Listing

Publication Analysis

Top Keywords

lps biosynthesis
16
lapb
10
lapb ycim
8
protein-protein interactions
8
lpxc lpxd
8
lps
7
biosynthesis
6
lpxc
5
ycim orchestrates
4
orchestrates protein-protein
4

Similar Publications

Background And Aims: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterised by progressive biliary inflammation and fibrosis, leading to liver cirrhosis and cholangiocarcinoma. GPBAR1 (TGR5) is a G protein-coupled receptor for secondary bile acids. In this study, we have examined the therapeutic potential of BAR501, a selective GPBAR1 agonist in a PSC model.

View Article and Find Full Text PDF

Background: It is well established that the interaction between osteogenesis and inflammation can impact bone tissue regeneration. The use of nanoparticles to treat and alleviate inflammation at the molecular level has the potential to improve the osteogenic microenvironment and serve as a therapeutic approach.

Methods: We have synthesized new hollow cerium oxide nanoparticles and doped with cathepsin B inhibitor (CA-074Me) to create novel CeO@CA-074Me NPs.

View Article and Find Full Text PDF

Trigeminal neuralgia (TN) is a debilitating condition affecting the patients' life quality. New therapeutic approaches and novel drugs are required to treat TN. Trazodone being a serotonin antagonist and reuptake inhibitor (SARI) provides neuroprotection, however its role and underlying mechanism in TN or are not clear.

View Article and Find Full Text PDF

Thiacloprid exposure disrupts the gut-liver axis and induces liver dysfunction in the Reeves' turtles (Mauremys reevesii).

Ecotoxicol Environ Saf

January 2025

Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China. Electronic address:

As one of the neonicotinoid insecticides, thiacloprid (THI) is extensively used in agriculture and frequently detected in various aquatic environments, posing a potential threat to aquatic organisms. However, the effects of THI exposure on aquatic turtles remain unknown. In this study, we focused on investigating whether THI has a toxic effect on the gut-liver axis in aquatic turtles.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research indicates that blocking the RIPK1/RIPK3/MLKL necrosome can help reduce inflammatory pain linked to conditions like demyelination in the central nervous system.
  • This study tests necrostatin-1s (Nec-1s), a specific RIPK1 inhibitor, on LPS-induced inflammatory pain in male mice, assessing pain sensitivity through hot plate tests and examining related protein changes.
  • Results show that Nec-1s not only prevents LPS-induced pain relief but also reverses the activation of key proteins and signals involved in inflammation and demyelination, suggesting that RIPK1 inhibitors could be a promising treatment for managing inflammatory pain.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!