A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improving the accuracy of copolymer sequence length determination by pyrolysis gas chromatography: A comprehensive study. | LitMetric

Improving the accuracy of copolymer sequence length determination by pyrolysis gas chromatography: A comprehensive study.

Anal Chim Acta

Analytical Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, Amsterdam, the Netherlands; Covestro, Group Innovation, Sluisweg 12, Waalwijk, the Netherlands.

Published: January 2023

Many industrial polymers which find application in contemporary materials are copolymers. Copolymers feature multiple distributions, that govern their physical properties, including the sequence distribution. Styrene-acrylate copolymers are an important class of polymers, their monomer sequence is typically determined by C NMR which suffers from low sensitivity and spectral resolution. A series of studies have shown that Py-GC can be applied to determine the sequence length of copolymers. The accuracy of the trimer assignments and the appropriate calibration approaches yielding reliable data have however not yet been validated. In the present study we propose a comprehensive workflow to ensure the accuracy of the sequence determination by Py-GC, next to NMR. In-depth analysis of the trimers observed in the Py-GC pyrograms of model styrene-acrylate copolymers was performed and specific MS fragments relating to the trimer sequence were assigned. A comparison of a series of copolymers yielded reliable assignments for the trimer signals. The obtained sequence lengths were in agreement with those calibrated with the benchmark method, C NMR. Py-GC was found to consistently underestimate the acrylate sequence length. Py-GC calibration with C NMR was thus found to be indispensable for the accurate absolute quantification of the sequence length by Py-GC. The calculated randomness did not vary significantly after NMR calibration, indicating that NMR calibration might not be required in all cases to obtain (relative) information on the sequence of a copolymer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2022.340635DOI Listing

Publication Analysis

Top Keywords

sequence length
16
sequence
10
styrene-acrylate copolymers
8
length py-gc
8
nmr calibration
8
copolymers
6
nmr
6
py-gc
6
improving accuracy
4
accuracy copolymer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!