In order to protect human health and the environment, highly efficient, low-cost, labor-saving, and green analysis of toxic chemicals are urgently required. To achieve this objective, we have developed a novel database-based automated identification and quantification system (AIQS) using LC-QTOF-MS. Since the AIQS uses retention times (RTs), exact MS and MS-MS spectra, and calibration curves of 484 chemicals registered in the database instead of the use of standards, the targets can be determined with low-cost in a short time. The AIQS uses Sequential Window Acquisition of All Theoretical Fragment-ion Spectra as an acquisition method by which we can obtain accurate MS and MS-MS spectra of all detectable substances in a sample with minimal interference from co-eluted peaks. Identification is certainly done using RTs, mass error, ion ratios (a precursor to two product ions), and accurate MS and MS-MS spectra. Consequently, the chance of misidentification is very low even in dirty samples. To examine the accuracy of the AIQS, two collaborative tests were conducted. The first test used 208 pesticide standards at two concentrations (10 and 100 ng mL) using 7 instruments, and showed that average trueness was 106 and 95.2%, respectively, with relative standard deviations of 90% of the test compounds below 30%. The second collaborative study involved 5 laboratories carrying out recovery tests on 200 pesticides using 10 river waters. The average recovery was 71.6%; this was 15% lower than that using purified water probably due to the matrix effects. The average relative standard deviation was 30% worse than that of measurement of the standards. Both the recovery and reproducibility, however, satisfied the criteria of Analytical Method Validity Guidelines, Ministry of Health, Labour and Welfare, Japan. Instrument detection limits of 96% of the registered compounds are below 10 pg. The AIQS allows for easy addition of new substances and retrospective analysis after their addition. The results applied to actual samples showed that the AIQS has sufficient identification and quantification performance as a target screening method for a large number of substances in environmental samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2022.340656 | DOI Listing |
Food Chem
January 2025
National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea. Electronic address:
Variations in the proportions of the two major soybean [Glycine max (L.) Merr.] seed globulins, glycinin (11S) and β-conglycinin (7S), significantly affect the nutritional and functional properties of soy-based products, but comprehensive methods for the identification and quantification of individual subunits of these proteins are currently lacking.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota;
Clinical metaproteomics reveals host-microbiome interactions underlying diseases. However, challenges to this approach exist. In particular, the characterization of microbial proteins present in low abundance relative to host proteins is difficult.
View Article and Find Full Text PDFJ Eukaryot Microbiol
January 2025
Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland.
The globally distributed ciliate Balanion planctonicum is a primary consumer of phytoplankton spring blooms. Due to its small size (~20 μm), identification and quantification by molecular tools is preferable as an alternative to the laborious counting of specimen in quantitative protargol stains. However, previous sequencing of the 18S rDNA V9 region of B.
View Article and Find Full Text PDFUnlabelled: Experimental studies have demonstrated that nutritional changes during development can result in phenotypic changes to mammalian cheek teeth. This developmental plasticity of tooth morphology is an example of phenotypic plasticity. Because tooth development occurs through complex interactions between manifold processes, there are many potential mechanisms which can contribute to a tooth's norm of reaction.
View Article and Find Full Text PDFJOR Spine
March 2025
Spine Labs St George and Sutherland Clinical School, University of New South Wales Kogarah New South Wales Australia.
Background: Pain of a chronic nature remains the foremost concern in tertiary spine clinics, yet its elusive nature and quantification challenges persist. Despite extensive research and education on low back pain (LBP), the realm of diagnostic practices lacks a unified approach. Clinically, LBP exhibits a multifaceted character, encompassing conventional assessments of severity and disability, alongside nuanced attributes like pain characterization, duration, and patient expectations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!