Brown rot disease broke out in stone fruit orchards of Fujian, China in 2019, despite pre-harvest application of methyl benzimidazole carbamate (MBC). To determine the reason, a total of 44 Monilinia fructicola strains were collected from nectarine, plum and peach fruits in this study, among which 79.5% strains were resistant to thiophanate-methyl, indicated by discriminatory dose of 5 μg/mL. The resistance of these strains was confirmed by treating detached peach fruit with label rates of formulated thiophanate-methyl which only completely inhibit infection of the sensitive strains, but not the resistant strains. Further analysis of the mechanism of MBC resistance revealed that all resistant strains carry a H6Y mutation in β-tubulin protein Tub2, which was only reported previously in the M. fructicola strains from California, USA, and do not display obvious fitness penalties, as no significant defects in mycelial growth rate, sporulation, conidia germination, aggressiveness on detached peach fruit and temperature sensitivity was detected. In addition, we found that diethofencarb, the agent for managing MBC-resistance strains, was unable to inhibit growth of the H6Y strains. Taken together, our study, for the first time, identified a mutation form of H6Y in the β-tubulin protein of M. fructicola in China, rendering the strains wide resistance to thiophanate-methyl. This mechanism of M. fructicola gaining resistance to MBC fungicides needs to be fully considered, when designing management strategies to control brown rot disease in stone fruit orchards.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pestbp.2022.105262 | DOI Listing |
J Mammary Gland Biol Neoplasia
January 2025
Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.
View Article and Find Full Text PDFVet Res Commun
January 2025
Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta N 36 Km 601, Río Cuarto City, 5800, Córdoba, Argentina.
Post-weaning diarrhea (PWD) is a major concern for pig producers, as stress and early weaning increase susceptibility to enteropathogens like enterotoxigenic Escherichia coli (ETEC) and Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium).
View Article and Find Full Text PDFCurr Microbiol
January 2025
Unit of Microbiology and Immunology, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India.
In recent years, there has been a global threat from emerging vector-borne diseases (VBD), despite the implementation of several vector control programs. Considering the benefits of bacterial pesticides, the present study aimed to isolate potential mosquitocidal bacteria from the various soil types collected from the Kasaragod (12.5°N, 75.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
An aerobic, Gram-stain-positive, motile, coccus-shaped actinomycete, designated strain LSe6-4, was isolated from leaves of sea purslane (Sesuvium portulacastrum L.) in Thailand and subjected to a polyphasic taxonomic studies. Growth of the strain occurred at temperatures between 15 and 38 °C, and with NaCl concentrations 0-13%.
View Article and Find Full Text PDFBioprocess Biosyst Eng
January 2025
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
p-Coumaric acid (p-CA), an invaluable phytochemical, has novel bioactivities, including antiproliferative, anxiolytic, and neuroprotective effects, and is the main precursor of various flavonoids, such as caffeic acid, naringenin, and resveratrol. Herein, we report the engineering of Escherichia coli for de novo production of p-CA via the PAL-C4H pathway. As the base strain, we used the E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!