The core elements of entomopathogenic nematode toxicity towards the fall armyworm Spodoptera frugiperda are associated with symbiotic bacteria. These microbes provide independent control effects and are reported to have repellency to insect pests. However, the ecological background of this nematode-bacteria-insect communication module is elusive. This work aims to identify key chemical cues which drive the trophic interactions through olfactory reception of S. frugiperda, and to inspire implementations with these isolated behavioral regulators in the corn field. A total of 657 volatiles were found within 13 symbiotic bacterial strains, and five of them induced significant electrophysiological responses of S. frugiperda larvae. 2-Hexynoic acid was demonstrated to exhibit a dominant role in deterring S. frugiperda larvae from feeding and localization. Field implementations with this novel volatile deterrent have resulted in fortified nematode applications. 2-Hexynoic acid acts as an excellent novel deterrent and presents remarkable application potential against fall armyworm larvae. Emissions from symbiotic bacteria of entomopathogenic nematodes are key players in chemical communication among insects, nematodes, and microbes. The olfactory perceptions and molecular targets for this volatile are worthy of future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pestbp.2022.105286 | DOI Listing |
Sci Rep
December 2024
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.
Entomopathogenic nematodes (EPNs) associated with their symbiotic bacteria can effectively kill insect pests, in agriculture, forestry and floriculture. Industrial-scale production techniques for EPNs have been established, including solid and liquid monoculture systems. It is found that supplement of 0.
View Article and Find Full Text PDFNat Commun
December 2024
School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia.
Sponges harbour complex microbiomes and as ancient metazoans and important ecosystem players are emerging as powerful models to understand the evolution and ecology of symbiotic interactions. Metagenomic studies have previously described the functional features of sponge symbionts, however, little is known about the metabolic interactions and processes that occur under different environmental conditions. To address this issue, we construct here constraint-based, genome-scale metabolic networks for the microbiome of the sponge Stylissa sp.
View Article and Find Full Text PDFSci Rep
December 2024
School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
Effector proteins secreted via the type III secretion system (T3SS) of nitrogen-fixing rhizobia are key determinants of symbiotic compatibility in legumes. Previous report revealed that the T3SS of Bradyrhizobium sp. DOA9 plays negative effects on Arachis hypogaea symbiosis.
View Article and Find Full Text PDFFront Microbiol
December 2024
College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China.
Introduction: Bunge is an important medicinal legume species widely cultivated in northeastern China (NEC) and northwestern China (NWC) and can establish a symbiotic relationship with nitrogen-fixing rhizobial strains. However, there are limited reports comparing the genetic diversity, differentiation, and gene flow of rhizobial strains associated with this plant in different geographic regions.
Methods: We used multilocus sequence analysis (MLSA) to investigate the phylogeny and genetic diversity of rhizobia and to estimate their intra- and inter-regional gene flow and genetic differentiation based on the analysis of concatenated core genes (, , and ) and the critical symbiotic gene .
Front Bioeng Biotechnol
December 2024
Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China.
Saline-alkali land is a type of soil environment that causes poor crop growth and low yields. Its management and utilization are, therefore of great significance for increasing arable land resources, ensuring food security, and enhancing agricultural production capacity. The application of plant growth-promoting rhizobacteria (PGPR) is an effective way to promote the establishment of symbiotic relationships between plants and the rhizosphere microenvironment, plant growth and development, and plant resistance to saline-alkali stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!