Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The healing process of infected wounds was limited by bacterial infection, excessive reactive oxygen species (ROS) accumulation, and tissue hypoxia. In order to alleviate the above situations, herein, a copper-rich multifunctional ultra-small Prussian blue nanozymes (HPP@Cu NZs) was constructed for infected wound synergistic treatment. Firstly, hyaluronic acid was modified by branched polyethyleneimine which could form a complex with copper ions, to construct copper-rich Prussian blue nanozymes. Secondly, the HPP@Cu NZs have a uniform ultra-small nano size and excellent photothermal response performance, exhibition of multifunctional enzymatic activity and anti-inflammatory properties. Finally, the slow release of copper ions in the HPP@Cu NZs could effectively promote the formation of new blood vessels, thus giving it multifunctional properties. In vitro and in vivo experiments showed that it not only could effectively inhibit and kill bacteria under 808 nm near-infrared laser but also could remove excessive ROS, regulate oxygen levels, and anti-inflammation. More importantly, the release of copper ions could synergistically promote the healing of infected wounds as well as good biocompatibility. Overall, our studies provide a multifunctional strategy for infected wounds with synergistic treatment based on carrier construction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.11.320 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!