Oxybenzone, a common ultraviolet (UV) filter, is a growing environmental concern due to its ecotoxicological effects. However, the responses of Symbiodiniaceae and their bacterial communities to oxybenzone are largely unknown. In this study, the effects of oxybenzone on Effrenium voratum and Cladocopium goreaui were investigated. The results revealed that sensitivity of Symbiodiniaceae to oxybenzone was species-dependent. 50 μg L of oxybenzone significantly impacted the cell density of C. goreaui, causing a 36.73% decrease. When oxybenzone concentration increased to 500 μg L and 5000 μg L, cell division was completely suppressed; meanwhile, chl-a content declined to zero. Compared to C. goreaui, E. voratum had higher resistance to oxybenzone. There was no significant difference in cell density between 50 μg L group and control group. At higher dosage of oxybenzone (500 μg L and 5000 μg L), the cell density declined 32.02% and 45.45% compared to the control group, respectively. Additionally, we revealed that the diversity and structure of bacterial community were affected by oxybenzone. Briefly, 500 μg L and 5000 μg L of oxybenzone altered the diversity of bacterial community in C. goreau. Furthermore, the relative abundances of Costertonia, Roseitalea, Rhodopirellula, and Roseobacter were negatively affected by oxybenzone ranging 50 μg L to 5000 μg L. Compare to C. goreaui, the bacterial community composition associated with E. voratum was more stable. As revealed by KEGG pathway analysis, oxybenzone affected energy metabolism and inhibited the metabolism of cofactors and vitamins in C. goreaui, while 5000 μg L of oxybenzone significantly altered the carbohydrate metabolism, membrane transport and amino acid metabolism in E. voratum. The changes of bacterial composition may contribute to the variation in algal growth. These results indicated that oxybenzone pollution could injury Symbiodiniaceae, even threaten coral reef ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2022.120807 | DOI Listing |
Sci Total Environ
January 2025
Department of Chemistry, Université de Sherbrooke, Sherbrooke, QC, Canada; Université de Sherbrooke Water Research Group (GREAUS), Université de Sherbrooke, Sherbrooke, QC, Canada. Electronic address:
In Canada studies on the presence of trace organic contaminants (TrOCs) such as pharmaceuticals, personal care products, pesticides and flame retardants in lakes have primarily focused on the water column at localized scales. To address this gap, the occurrence of 44 TrOCs, representative of various types of human activities, was investigated in surface sediments (0-2 cm) from 193 lakes across Canada. A total of 28 targeted TrOCs were detected, with 99.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
The adverse effect of chemical additives leaching from microplastics (MPs) on Daphnia magna populations is not fully understood. In this study, D. magna populations were exposed to polyethylene (PE) MP fragments (5.
View Article and Find Full Text PDFFood Chem Toxicol
January 2025
Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA. Electronic address:
Benzophenone-3 (also referred to as oxybenzone) is a putative endocrine disrupting chemical and common ingredient in sunscreens and other personal care products. We previously showed that benzophenone-3 can have both promotional and protective effects on mammary tumorigenesis dependent upon dietary fat. The current study examined diet-dependent effects of benzophenone-3 in mammary ductal development in BALB/c mice.
View Article and Find Full Text PDFAquat Toxicol
January 2025
Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina - UFSC, Florianópolis, SC 88037-000, Brazil. Electronic address:
Personal care products (PCPs), such as sunscreens, are usually found in various aquatic ecosystems at low concentrations (ng l to µg l). However, there is limited information regarding their effects on marine bivalves. Therefore, the aim of this study was to evaluate the sublethal effects of environmental concentrations (1 and 100 µg l) of benzophenone-3 (BP-3) in Crassostrea gigas oysters after 1 and 7 days of exposure.
View Article and Find Full Text PDFChem Asian J
January 2025
Indian Institute of Science Education and Research Thiruvananthapuram, chemistry, 2204, School of Chemistry, Vithura, 695551, Thiruvananthapuram, INDIA.
A one-pot methodology for the tandem acylation and oxidative aromatization of vinylogous thioesters to 2-acyl-5-(alkyl/arylthio)phenols is presented. Initially, cyclohexane-1,3-diones were converted to vinylogous thioesters through FeCl3-mediated thioenolization. This was followed by LiTMP-mediated acylation and DDQ-mediated aromatization, which resulted in the synthesis of sulphur derived oxybenzone analogs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!