Encapsulation and delivery of phage as a novel method for gut flora manipulation in situ: A review.

J Control Release

State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York 10065, USA; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China. Electronic address:

Published: January 2023

Intestinal flora regulation is an effective method to intervene and treat diseases associated with microbiome imbalance. In addition to conventional probiotic supplement, phage delivery has recently exhibited great prospect in modifying gut flora composition and regulating certain gene expression of gut bacteria. However, the protein structure of phage is vulnerable to external factors during storage and delivery, which leads to the loss of infection ability and flora regulation function. Encapsulation strategy provides an effective solution for improving phage stability and precisely controlling delivery dosage. Different functional materials including enzyme-responsive and pH-responsive polymers have been used to construct encapsulation carriers to protect phages from harsh conditions and release them in the colon. Meanwhile, diverse carriers showed different characteristics in structure and function, which influenced their protective effect and delivery efficiency. This review systematically summarizes recent research progress on the phage encapsulation and delivery, with an emphasis on function properties of carrier systems in the protection effect and colon-targeted delivery. The present review may provide a theoretical reference for the encapsulation and delivery of phage as microbiota modulator, so as to expedite the development of functional material and delivery carrier, as well as the advances in practical application of intestinal flora regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2022.11.048DOI Listing

Publication Analysis

Top Keywords

encapsulation delivery
12
flora regulation
12
delivery phage
8
gut flora
8
intestinal flora
8
delivery
8
phage
6
encapsulation
5
flora
5
phage novel
4

Similar Publications

Thyroid-Targeted Nano-Bombs Empower HIFU for Graves' Disease.

Adv Sci (Weinh)

January 2025

The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China.

Graves' disease (GD) is an autoimmune disorder with a high incidence rate, particularly affecting women of reproductive age. Current treatment modalities for GD carry significant disadvantages, especially for pregnant or nursing women. As a novel extracorporeal therapeutic technique, high-intensity focused ultrasound (HIFU) shows great promise for treating GD; however, its low treatment efficacy impedes clinical application.

View Article and Find Full Text PDF

Biomimetic bioreactor for potentiated uricase replacement therapy in hyperuricemia and gout.

Front Bioeng Biotechnol

January 2025

Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, Institute of Clinical Immunology, Academy of Orthopedics, Guangzhou, Guangdong, China.

Introduction: Uricase replacement therapy is a promising approach for managing hyperuricemia and gout but is hindered by challenges such as short blood circulation time, reduced catalytic activity, and excessive hydrogen peroxide (HO) production. These limitations necessitate innovative strategies to enhance therapeutic efficacy and safety.

Methods: We designed and synthesized RBC@SeMSN@Uri, a red blood cell-coated biomimetic self-cascade bioreactor, which encapsulates uricase (Uri) and a selenium-based nano-scavenger (SeMSN) within RBC membranes.

View Article and Find Full Text PDF

We present a novel, highly customizable glutathione-responsive nanogel (NG) platform for efficient mRNA delivery with precise mRNA payload release control. Optimization of various cationic monomers, including newly synthesized cationic polyarginine, polyhistidine, and acrylated guanidine monomers, allowed fine-tuning of NG properties for mRNA binding. By incorporating a poly(ethylene) glycol-based disulphide crosslinker, we achieved glutathione-triggered mRNA release, enabling targeted intracellular delivery.

View Article and Find Full Text PDF

Nanocarrier-mediated cancer therapy with cisplatin: .

Heliyon

April 2024

Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Victoria, Australia.

Aims: Cisplatin is a frontline chemotherapeutic utilized to attenuate multiple cancers in the clinic. Given its side-effects, a new cisplatin formulation which could prevent cytotoxicity, metabolic deficiencies and metastasis is much needed. This study investigates whether nanocarriers can provide a better mode of drug delivery in preclinical cancer models seeking a potent anticancer therapeutic agent.

View Article and Find Full Text PDF

A novel micelleplex for tumour-targeted delivery of CRISPR-Cas9 against KRAS-mutated lung cancer.

Nanoscale

January 2025

Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandtstraße 5-13, Munich, 81377, Germany.

CRISPR-Cas9 has emerged as a highly effective and customizable genome editing tool, holding significant promise for the treatment of KRAS mutations in lung cancer. In this study, we introduce a novel micelleplex, named C14-PEI, designed to co-deliver Cas9 mRNA and sgRNA efficiently to excise the mutated KRAS allele in lung cancer cells. C14-PEI is synthesised from 1,2-epoxytetradecane and branched PEI 600 Da a ring-opening reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!