Extreme weather events are increasing in frequency and magnitude with profound effects on ecosystem functioning. Further, there is now a greater likelihood that multiple extreme events are occurring within a single year. Here we investigated the effect of a single drought, flood or compound (flood + drought) extreme event on temperate grassland ecosystem processes in a field experiment. To assess system resistance and resilience, we studied changes in a wide range of above- and below-ground indicators (plant diversity and productivity, greenhouse gas emissions, soil chemical, physical and biological metrics) during the 8 week stress events and then for 2 years post-stress. We hypothesized that agricultural grasslands would have different degrees of resistance and resilience to flood and drought stress. We also investigated two alternative hypotheses that the combined flood + drought treatment would either, (A) promote ecosystem resilience through more rapid recovery of soil moisture conditions or (B) exacerbate the impact of the single flood or drought event. Our results showed that flooding had a much greater effect than drought on ecosystem processes and that the grassland was more resistant and resilient to drought than to flood. The immediate impact of flooding on all indicators was negative, especially for those related to production, and climate and water regulation. Flooding stress caused pronounced and persistent shifts in soil microbial and plant communities with large implications for nutrient cycling and long-term ecosystem function. The compound flood + drought treatment failed to show a more severe impact than the single extreme events. Rather, there was an indication of quicker recovery of soil and microbial parameters suggesting greater resilience in line with hypothesis (A). This study clearly reveals that contrasting extreme weather events differentially affect grassland ecosystem function but that concurrent events of a contrasting nature may promote ecosystem resilience to future stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.160660 | DOI Listing |
J Insect Sci
January 2025
Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, McMinnville, TN, USA.
The role of flood and drought stress on Xylosandrus ambrosia beetle attacks and colonization in nursery trees with varying levels of water stress tolerance has not yet been studied. This study aimed to examine ambrosia beetle preference for tree species varying in their tolerance to water stress. Container-grown dogwoods, redbuds, and red maples were exposed to flood, drought, or sufficient water treatments for 28 d and beetle attacks were counted every third day.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany.
Drought and flood (water stress) alter plant metabolism, impacting the phytochemical content and biological effects. Using spectrophotometric, HPLC, and electrophoretic methods, we analyze the effects of water stress on broccoli ( L. convar.
View Article and Find Full Text PDFFoods
January 2025
Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA.
Africa is grappling with severe food security challenges driven by population growth, climate change, land degradation, water scarcity, and socio-economic factors such as poverty and inequality. Climate variability and extreme weather events, including droughts, floods, and heatwaves, are intensifying food insecurity by reducing agricultural productivity, water availability, and livelihoods. This study examines the projected threats to food security in Africa, focusing on changes in temperature, precipitation patterns, and the frequency of extreme weather events.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Physics (Atmospheric Physics), Wollo university, Dessie, Ethiopia.
Ethiopia's agriculture is mostly dependent on rain, though the rainfall distribution and amount are varied in spatiotemporal context. The study was conducted to analyze the distribution, trends, and variability of monthly, seasonal, and annual rainfall data over the Wollo area from 1981 to 2022. To accomplish this, the study utilized the Climate Hazards Group Infrared Precipitation with Stations version two (CHIRPS-v2) data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!