Background: Hnf4a gene ablation in mouse liver causes hepatic steatosis, perturbs HDL structure and function and affects many pathways and genes related to glucose metabolism. Our aim here was to investigate the role of liver HNF4A in glucose homeostasis.
Methods: Serum and tissue samples were obtained from Alb-Cre;Hnf4a (H4LivKO) mice and their littermate Hnf4a controls. Fasting glucose and insulin, glucose tolerance, insulin tolerance and glucagon challenge tests were performed by standard procedures. Binding of HNF4A to DNA was assessed by chromatin immunoprecipitation assays. Gene expression analysis was performed by quantitative reverse transcription PCR.
Results: H4LivKO mice presented lower blood levels of fasting glucose, improved glucose tolerance, increased serum lactate levels and reduced response to glucagon challenge compared to their control littermates. Insulin signaling in the liver was reduced despite the increase in serum insulin levels. H4LivKO mice showed altered expression of genes involved in glycolysis, gluconeogenesis and glycogen metabolism in the liver. The expression of the gene encoding the glucagon receptor (Gcgr) was markedly reduced in H4LivKO liver and chromatin immunoprecipitation assays revealed specific and strong binding of HNF4A to the Gcgr promoter. H4LivKO mice presented increased amino acid concentration in the serum, α-cell hyperplasia and a dramatic increase in glucagon levels suggesting an impairment of the liver-α-cell axis. Glucose administration in the drinking water of H4LivKO mice resulted in an impressive extension of survival. The expression of several genes related to non-alcoholic fatty liver disease progression to more severe liver pathologies, including Mcp1, Gdf15, Igfbp-1 and Hmox1, was increased in H4LivKO mice as early as 6 weeks of age and this increased expression was sustained until the endpoint of the study.
Conclusions: Our results reveal a novel role of liver HNF4A in controlling blood glucose levels via regulation of glucagon signaling. In combination with the steatotic phenotype, our results suggest that H4LivKO mice could serve as a valuable model for studying glucose homeostasis in the context of non-alcoholic fatty liver disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.metabol.2022.155371 | DOI Listing |
Metabolism
February 2023
Laboratory of Biochemistry, University of Crete Medical School, Heraklion 71003, Greece; Gene Regulation and Epigenetics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion 71003, Greece. Electronic address:
Background: Hnf4a gene ablation in mouse liver causes hepatic steatosis, perturbs HDL structure and function and affects many pathways and genes related to glucose metabolism. Our aim here was to investigate the role of liver HNF4A in glucose homeostasis.
Methods: Serum and tissue samples were obtained from Alb-Cre;Hnf4a (H4LivKO) mice and their littermate Hnf4a controls.
Metabolism
September 2020
Laboratory of Biochemistry, University of Crete Medical School, Heraklion 71003, Greece; Gene Regulation and Genomics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion 70013, Greece. Electronic address:
Background: Aberrant concentration, structure and functionality of High Density Lipoprotein (HDL) are associated with many prevalent diseases, including cardiovascular disease and non-alcoholic fatty liver disease (NAFLD). Mice with liver-specific ablation of Hnf4α (H4LivKO) present steatosis and dyslipidemia by mechanisms that are not completely understood. The aim of this study was to explore the role of liver HNF4A in HDL metabolism and the development of steatosis.
View Article and Find Full Text PDFHepatology
February 2007
AMC Liver Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
Unlabelled: In liver, most genes are expressed with a porto-central gradient. The transcription factor hepatic nuclear-factor4alpha (HNF4alpha) is associated with 12% of the genes in adult liver, but its involvement in zonation of gene expression has not been investigated. A putative HNF4alpha-response element in the upstream enhancer of glutamine synthetase (GS), an exclusively pericentral enzyme, was protected against DNase-I and interacted with a protein that is recognized by HNF4alpha-specific antiserum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!