Trajectory phase transitions in non-interacting systems: all-to-all dynamics and the random energy model.

Philos Trans A Math Phys Eng Sci

Department of Mathematics, TU Munich, Germany.

Published: January 2023

AI Article Synopsis

Article Abstract

We study the fluctuations of time-additive random observables in the stochastic dynamics of a system of [Formula: see text] non-interacting Ising spins. We mainly consider the case of all-to-all dynamics where transitions are possible between any two spin configurations with uniform rates. We show that the cumulant generating function of the time-integral of a normally distributed quenched random function of configurations, i.e. the energy function of the random energy model (REM), has a phase transition in the large [Formula: see text] limit for trajectories of any time extent. We prove this by determining the exact limit of the scaled cumulant generating function. This is accomplished by connecting the dynamical problem to a spectral analysis of the all-to-all quantum REM. We also discuss finite [Formula: see text] corrections as observed in numerical simulations. This article is part of the theme issue 'Quantum annealing and computation: challenges and perspectives'.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2021.0415DOI Listing

Publication Analysis

Top Keywords

[formula text]
12
all-to-all dynamics
8
random energy
8
energy model
8
cumulant generating
8
generating function
8
trajectory phase
4
phase transitions
4
transitions non-interacting
4
non-interacting systems
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!