Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Serum amyloid A (SAA) is an acute response protein that mainly produced by hepatocytes, and it can promote endothelial dysfunction via a pro-inflammatory and pro-thrombotic effect in atherosclerosis and renal disease. Overdose of Acetaminophen (APAP) will cause hepatotoxicity accompany with hepatocyte necrosis, liver sinusoidal endothelial cells (LSECs) damage and thrombosis in liver. However, whether SAA plays a role in APAP-induced liver toxicity remains unclear. Here, we evaluated the Saa1/2 expression in APAP-induced liver injury, and found that Saa1/2 production was significantly increased in an autocrine manner in APAP injury model. Moreover, we used neutralizing antibody (anti-SAA) to block the function of serum Saa1/2. We found that neutralizing serum Saa1/2 protected against APAP-induced liver injuries and increased the survival rate of mice that were treated with lethal dose APAP. Further investigations showed that blocking Saa1/2 reduced APAP-induced sinusoidal endothelium damage, hemorrhage and thrombosis. In addition, in vitro experiments showed that Saa1/2 augmented the toxic effect of APAP on LSECs, and Saa1/2 promoted platelets aggregation on LSECs cell membrane. Taken together, this study suggests that Saa1/2 may play a critical role in APAP-induced liver damages through platelets aggregation and sinusoidal damage. Therefore, we conceptually demonstrate that inhibition of SAA may be a potential intervention for APAP-directed acute liver injuries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2022.11.079 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!