Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Triclosan (TCS) is a widespread antimicrobial agent that is associated with many adverse health outcomes. Its gut toxicity has been attributed to the molecular modifications mediated by commensal microbes, but microbial transformations of TCS derivatives in the gut lumen are still largely unknown. Aromatic hydroxylation is the predominant oxidative metabolism of TCS that linked to its toxicological effects in host tissues. Here, we aimed to reveal the biological fates of hydroxyl-TCS (OH-TCS) in the colon, where intestinal microbes mainly reside. Unlike the profiles generated via host metabolism, OH-TCS species remain unconjugated in human stools from a cohort study. Through tracking molecular compositions in mouse intestinal tract, elevated abundance of free-form OH-TCS while reduced abundance of conjugated forms was observed in the colon digesta and mucosa. Using antibiotic-treated and germ-free mice, as well as in vitro approaches, we demonstrate that gut microbiota-encoded enzymes efficiently convert glucuronide/sulfate-conjugated OH-TCS, which are generated from host metabolism, back to their bioactive free-forms in colon tissues. Thus, host-gut microbiota metabolic interactions of TCS derivatives were proposed. These results shed light on the crucial roles of microbial metabolism in TCS toxicity, and highlight the importance of incorporating gut microbial transformations in health risk assessment of environmental chemicals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187939 | PMC |
http://dx.doi.org/10.1016/j.jhazmat.2022.130509 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!