A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microbiota-mediated reactivation of triclosan oxidative metabolites in colon tissues. | LitMetric

AI Article Synopsis

  • * The study investigates hydroxyl-TCS (OH-TCS) in the colon, finding that it remains unconjugated in human stools and that the gut microbiota converts conjugated forms back into active forms in mice.
  • * These findings emphasize the importance of gut microbial metabolism in TCS toxicity and suggest that understanding these interactions is vital for assessing the health risks of environmental chemicals.

Article Abstract

Triclosan (TCS) is a widespread antimicrobial agent that is associated with many adverse health outcomes. Its gut toxicity has been attributed to the molecular modifications mediated by commensal microbes, but microbial transformations of TCS derivatives in the gut lumen are still largely unknown. Aromatic hydroxylation is the predominant oxidative metabolism of TCS that linked to its toxicological effects in host tissues. Here, we aimed to reveal the biological fates of hydroxyl-TCS (OH-TCS) in the colon, where intestinal microbes mainly reside. Unlike the profiles generated via host metabolism, OH-TCS species remain unconjugated in human stools from a cohort study. Through tracking molecular compositions in mouse intestinal tract, elevated abundance of free-form OH-TCS while reduced abundance of conjugated forms was observed in the colon digesta and mucosa. Using antibiotic-treated and germ-free mice, as well as in vitro approaches, we demonstrate that gut microbiota-encoded enzymes efficiently convert glucuronide/sulfate-conjugated OH-TCS, which are generated from host metabolism, back to their bioactive free-forms in colon tissues. Thus, host-gut microbiota metabolic interactions of TCS derivatives were proposed. These results shed light on the crucial roles of microbial metabolism in TCS toxicity, and highlight the importance of incorporating gut microbial transformations in health risk assessment of environmental chemicals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187939PMC
http://dx.doi.org/10.1016/j.jhazmat.2022.130509DOI Listing

Publication Analysis

Top Keywords

colon tissues
8
microbial transformations
8
tcs derivatives
8
metabolism tcs
8
generated host
8
host metabolism
8
tcs
5
microbiota-mediated reactivation
4
reactivation triclosan
4
triclosan oxidative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!