Background: Propofol is an anesthetic agent and can impede the progression of human diseases. Circular RNA (circRNA) circ_0003645 has been identified to promote the development of atherosclerosis (AS). This study aimed at the functional mechanism of propofol and circ_0003645 in AS.

Methods: AS cell model was established by treatment of oxidized low-density lipoprotein (ox-LDL) in human umbilical vein endothelial cells (HUVECs). Cell viability or apoptosis detection was performed by Cell Counting Kit-8 (CCK-8) assay and flow cytometry. Circ_0003645, microRNA-149-3p (miR-149-3p) and tumor necrosis factor receptor-associated factor 7 (TRAF7) levels were determined by the quantitative real-time polymerase chain reaction (qRT-PCR). Inflammatory cytokines were examined using enzyme-linked immunosorbent assay (ELISA). Protein analysis was conducted by western blot. The interaction of miR-149-3p and circ_0003645 or TRAF7 was analyzed using dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay.

Results: Treatment of ox-LDL inhibited cell viability and enhanced apoptosis in HUVECs to establish the AS cell model. Propofol protected against cell viability inhibition and apoptosis promotion in AS cell model. Circ_0003645 expression was downregulated by propofol in AS cell model. Propofol alleviated cell apoptosis and inflammation by decreasing the circ_0003645 level. Circ_0003645 targeted miR-149-3p, and circ_0003645/miR-149-3p axis was involved in the functional regulation of propofol. TRAF7 was the target of miR-149-3p. Inhibition of miR-149-3p affected the function of propofol by upregulating the TRAF7 expression. Circ_0003645 sponged miR-149-3p to induce the upregulation of TRAF7 following propofol treatment.

Conclusion: It has been suggested that propofol acted as an inhibitor against the ox-LDL-induced cell injury by the circ_0003645/miR-149-3p/TRAF7 axis.

Download full-text PDF

Source
http://dx.doi.org/10.3233/CH-221437DOI Listing

Publication Analysis

Top Keywords

cell model
16
cell viability
12
cell
11
propofol
10
cell apoptosis
8
human umbilical
8
umbilical vein
8
vein endothelial
8
endothelial cells
8
circ_0003645/mir-149-3p/traf7 axis
8

Similar Publications

Regulation of T Cell Glycosylation by MXene/β-TCP Nanocomposite for Enhanced Mandibular Bone Regeneration.

Adv Healthc Mater

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.

View Article and Find Full Text PDF

In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.

View Article and Find Full Text PDF

Introduction: The purpose of this study was to evaluate the association between body composition, overall survival, odds of receiving treatment, and patient-reported outcomes (PROs) in individuals living with metastatic non-small-cell lung cancer (mNSCLC).

Methods: This retrospective analysis was conducted in newly diagnosed patients with mNSCLC who had computed-tomography (CT) scans and completed PRO questionnaires close to metastatic diagnosis date. Cox proportional hazard models and logistic regression evaluated overall survival and odds of receiving treatment, respectively.

View Article and Find Full Text PDF

Bergapten Ameliorates Renal Fibrosis by Inhibiting Ferroptosis.

Phytother Res

January 2025

Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.

Renal fibrosis is the most common pathway for the development of end-stage renal disease (ESRD) in various kidney diseases. Currently, the treatment options for renal fibrosis are limited. Ferroptosis is iron-mediated lipid peroxidation, triggered mainly by iron deposition and ROS generation.

View Article and Find Full Text PDF

Elevated LINC00115 expression correlates with aggressive endometrial cancer phenotypes via JAK/STAT pathway modulation.

Hum Mol Genet

January 2025

Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of CM, No. 19, Renmin Road, Jinshui District, Zhengzhou City, Henan Province, China.

This study systematically explores the oncogenic role of the long non-coding RNA (lncRNA) LINC00115 in endometrial cancer (EC) and reveals its unique mechanism in promoting proliferation, invasion, and metastasis via the JAK/STAT signaling pathway. LINC00115 is significantly upregulated in EC tissues and closely associated with advanced TNM staging and lymph node metastasis. Functional assays showed that knockdown of LINC00115 suppressed EC cell proliferation, invasion, and metastasis, while overexpression enhanced these malignant behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!