Early stages of diabetic kidney disease (DKD) are difficult to diagnose in patients with type 2 diabetes. This work was aimed at identifying contrast-enhanced ultrasound (CEUS) perfusion parameters, a microcirculatory biomarker indicative of early DKD progression. CEUS kidney flash-replenishment data were acquired in control, insulin resistant and diabetic vervet monkeys (N = 16). By use of a mono-exponential model, time-intensity curve parameters related to blood volume (A), velocity (β) and flow rate (perfusion index [PI]) were extracted from 10 concentric kidney layers to study spatial perfusion patterns that could serve as strong indicators of disease. Mean squared error (MSE) was used to assess model performance. Features calculated from the perfusion parameters were inputs for the linear regression models to determine which features could distinguish between cohorts. The mono-exponential model performed well, with average MSEs (±standard deviation) of 0.0254 (±0.0210), 0.0321 (±0.0242) and 0.0287 (±0.0130) for the control, insulin resistant and diabetic cohorts, respectively. Perfusion index features, with blood pressure, were the best classifiers between cohorts (p < 0.05). CEUS has the potential to detect early microvascular changes, providing insight into disease-related structural changes in the kidney. The sensitivity of this technique should be explored further by assessing various stages of DKD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217529PMC
http://dx.doi.org/10.1016/j.ultrasmedbio.2022.10.015DOI Listing

Publication Analysis

Top Keywords

perfusion parameters
12
kidney disease
8
contrast-enhanced ultrasound
8
control insulin
8
insulin resistant
8
resistant diabetic
8
mono-exponential model
8
perfusion
6
classifying kidney
4
disease vervet
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!