Continuous direct compression (CDC) of solid oral dosage forms requires materials exhibiting acceptable flow and compression properties. The desired active pharmaceutical ingredient (API) powder properties can be difficult to achieve through conventional particle engineering approaches, such as particle size and habit modification during crystallization. Co-processing of API with excipients can significantly improve the powder properties to overcome these difficulties. In this manuscript, performance of a co-processed API was evaluated in a continuous feeding and blending process using GEA ConsiGma® Continuous Dosing and Blending Unit (CDB1). The co-processed theophylline was generated via a methodology in which polymer was precipitated and coated the crystalline theophylline particles resulting in nearly spherical agglomerates. A range of drug loads (1-25% w/w), flow rates (15-40 kg/h) and blender speeds (220-400 rpm) were studied. The results demonstrated that the co-processed API can be successfully fed through a loss-in-weight feeder and blended with other excipients in a high shear blender to generate tablets with acceptable content uniformity at 1-25% w/w drug loads. This study supports that using co-processed API with enhanced powder properties is a promising approach to enable continuous manufacturing for APIs with challenging properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2022.11.023DOI Listing

Publication Analysis

Top Keywords

powder properties
12
co-processed api
12
continuous feeding
8
feeding blending
8
drug loads
8
1-25% w/w
8
continuous
5
co-processed
5
properties
5
api
5

Similar Publications

Ensuring companion animal welfare is a top priority for the pet industry and owners alike. The health of the pets can be directly and effectively improved through diet. Chenpi includes beneficial ingredients with proven anti-inflammatory, antioxidant, and immunomodulatory properties.

View Article and Find Full Text PDF

Novel AIE-Active Polyarylethersulfone Polymers Incorporating Tetraphenylethene for Enhanced Fluorescence.

Macromol Rapid Commun

January 2025

College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, China.

Aggregation-induced emission (AIE) materials have gained significant attention for their unique fluorescence enhancement in the aggregated state. However, combining rigid polymers with AIE molecules to enhance luminescent properties remains to be investigated. In this work, two novel AIE-active polyarylethersulfone (PAES) derivatives are synthesized by incorporating tetraphenylethene (TPE) into either the side chain or main chain of PAES, resulting in side-chain polyarylethersulfone-tetraphenylethene (PAES-TPE) and main-chain polyarylethersulfone-tetraphenylethene (m-PAES-TPE), respectively.

View Article and Find Full Text PDF

All Light Controlled Five State Logic Gates on a Ferroelectric Ceramic Chip.

Adv Mater

January 2025

State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.

Differentiating photoelectric response in a single material with a simple approach is desirable for all-in-one optoelectronic logical devices. In ferroelectric materials, significantly distinct photoelectric features should be observed if they are in diverse polarization states, unveiling a possible pathway to realize multifunctional optoelectronic logic gates through ferroelectric polarization design. In this study, the Ti self-doping strategy is first applied to 0.

View Article and Find Full Text PDF

Background: Moringa peregrina, renowned for its extensive health benefits, continues to reveal its therapeutic potential through ongoing research. The synthesis of Moringa peregrina extract-selenium nanoparticles (MPE-SeNPs) has emerged as a promising approach in developing versatile therapeutic agents.

Objective: To evaluate the protective effects of MPE-SeNPs against oxidative damage and inflammation caused by HgCl2 exposure in mice.

View Article and Find Full Text PDF

Some properties and applications of the tabletability equation.

Int J Pharm

January 2025

Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:

A recently derived tabletability equation mathematically describes tablet tensile strength as a function of compaction pressure. In this work, further analysis of the tabletability equation reveals that the normalized slope at the inflection point correlates well with powder plasticity, indicating its potential use as a powder plasticity parameter. Additionally, we explore applications of the tabletability equation in quantifying errors caused by a tensile strength measurement method that disregards out-of-die elastic recovery for assessing tabletability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!