Background: Pharyngeal colonisation by the commensal bacterium Neisseria lactamica inhibits colonisation by Neisseria meningitidis and has an inverse epidemiological association with meningococcal disease. The mechanisms that underpin this relationship are unclear, but could involve the induction of cross-reactive immunity. In this study, we aimed to evaluate whether colonisation with N lactamica induces N lactamica-specific B-cell responses that are cross-reactive with N meningitidis.

Methods: In this randomised, placebo-controlled, human infection trial at University Hospital Southampton Clinical Research Facility (Southampton, UK), healthy adults aged 18-45 years were randomly assigned (2:1) to receive intranasal inoculation with either 10 colony-forming units of N lactamica in 1 mL phosphate-buffered saline (PBS) or 1 mL PBS alone. Participants and researchers conducting participant sampling and immunological assays were masked to allocation. The primary endpoint was the frequency of circulating N lactamica-specific plasma cells and memory B cells after N lactamica inoculation (day 7-28) compared with baseline values (day 0), measured using enzyme-linked immunospot assays. The secondary endpoint was to measure the frequency of N meningitidis-specific B cells. In a second study, we measured the effect of duration of N lactamica colonisation on seroconversion by terminating carriage at either 4 days or 14 days with single-dose oral ciprofloxacin. The studies are now closed to participants. The trials are registered with ClinicalTrials.gov, NCT03633474 and NCT03549325.

Findings: Of 50 participants assessed for eligibility between Sept 5, 2018, and March 3, 2019, 31 were randomly assigned (n=20 N lactamica, n=11 PBS). Among the 17 participants who were colonised with N lactamica, the median baselines compared with peak post-colonisation N lactamica-specific plasma-cell frequencies (per 10 peripheral blood mononuclear cells) were 0·0 (IQR 0·0-0·0) versus 5·0 (1·5-10·5) for IgA-secreting plasma cells (p<0·0001), and 0·0 (0·0-0·0) versus 3·0 (1·5-9·5) for IgG-secreting plasma cells (p<0·0001). Median N lactamica-specific IgG memory-B-cell frequencies (percentage of total IgG memory B cells) increased from 0·0024% (0·0000-0·0097) at baseline to 0·0384% (0·0275-0·0649) at day 28 (p<0·0001). The frequency of N meningitidis-specific IgA-secreting and IgG-secreting plasma cells and memory B cells also increased signficantly in participants who were colonised with N lactamica. Upper respiratory tract symptoms were reported in ten (50%) of 20 participants who were inoculated with N lactamica and six (55%) of 11 participants who were inoculated with PBS (p>0·99). Three additional adverse events (two in the N lactamica group and one in the PBS group) and no serious adverse events were reported. In the second study, anti-N lactamica and anti-N meningitidis serum IgG titres increased only in participants who were colonised with N lactamica for 14 days.

Interpretation: Natural immunity to N meningitidis after colonisation with N lactamica might be due to cross-reactive adaptive responses. Exploitation of this microbial mechanism with a genetically modified live vector could protect against N meningitidis colonisation and disease.

Funding: Wellcome Trust, Medical Research Council, and NIHR Southampton Biomedical Research Centre.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615047PMC
http://dx.doi.org/10.1016/S2666-5247(22)00283-XDOI Listing

Publication Analysis

Top Keywords

colonisation neisseria
8
lactamica
8
neisseria lactamica
8
b-cell responses
8
human infection
8
infection trial
8
randomly assigned
8
pbs participants
8
plasma cells
8
colonisation
5

Similar Publications

To assess the prevalence of Neisseria meningitidis (Nm) carriage among men who have sex with men (MSM) and examine potential risk factors associated with colonization. This was an observational, cross-sectional, monocentric study. Inclusion criteria were asymptomatic adult MSM.

View Article and Find Full Text PDF

Background: Clusters of male urethritis cases, caused by a novel clade of non-groupable Neisseria meningitidis (NmUC, "the clade"), have been reported globally. Genetic features unique to NmUC isolates include: the acquisition of the gonococcal denitrification loci, norB-aniA; a unique factor H binding protein (fHbp) variant; and loss of group C capsule and intrinsic lipooligosaccharide sialylation. We hypothesized that these characteristics might confer a colonization and survival advantage to NmUC during male urethral infection relative to non-clade group C Neisseria meningitidis.

View Article and Find Full Text PDF

Gonorrhea, caused by the human-restricted pathogen Neisseria gonorrhoeae, is a commonly reported sexually transmitted infection. Since most infections in women are asymptomatic, the true number of infections is likely much higher than reported. How gonococci (GC) colonize women's cervixes without triggering symptoms remains elusive.

View Article and Find Full Text PDF

The oral-gut microbiota relationship in healthy humans: identifying shared bacteria between environments and age groups.

Front Microbiol

October 2024

NanoBiomaterials for Targeted Therapies, INEB - Instituto Nacional de Engenharia Biomédica, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.

Introduction: Although the oral cavity and the gut are anatomically continuous regions of the gastrointestinal tract, research on the relationship between oral and gut microbiota remains sparse. Oral-gut bacterial translocation is mostly studied in pathological contexts, thus evidence of translocation in healthy conditions is still scarce. Studying the oral-gut microbiota relationship in humans in different life stages is necessary in order to understand how these microbial communities might relate throughout life.

View Article and Find Full Text PDF

Associations between Wastewater Microbiome and Population Smoking Rate Identified Using Wastewater-Based Epidemiology.

Environ Health (Wash)

December 2023

School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong 2522, Australia.

Tobacco use is known to cause health damage, partly by changing the mouth, respiratory tract, and gut-related microbiomes. This study aims to identify the associations between the human microbiome detected in domestic wastewater and the population smoking rate. Metagenomic sequencing and a biomarker discovery algorithm were employed to identify microorganisms as potential microbial biomarkers of smoking through wastewater-based epidemiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!