Bioretention has been widely used to mitigate hydrologic impacts of stormwater runoff and is increasingly being relied upon to treat chemical and biological pollutants transported by stormwater. Despite this reliance, we still lack an understanding of treatment performance for certain organic and biological contaminants which may interact with biotic and abiotic components of bioretention systems. We evaluated the treatment of fecal indicator bacteria (FIB) and polycyclic aromatic hydrocarbons (PAHs) in stormwater runoff by bioretention. We compared treatment performance by Washington's standard bioretention mix of 60% sand: 40% compost (by volume), and by three other mixtures amended with biochar, fungi (Stropharia rugosoannulata), or both. All bioretention columns were conditioned with clean water and then dosed with collected roadway runoff at a rate equivalent to a 6 month, 24 h storm in this region during 8 events over a 14-month period. Effluents for each column were analyzed for 23 PAHs, Escherichia coli, fecal coliform, dissolved organic carbon (DOC), and total suspended solids (TSS). The fate and transport of PAHs within the bioretention columns was tracked by measuring soil PAHs in media cores taken from the columns. ΣPAH were almost completely removed by all treatments across all storms, with removal rates ranging from 97 to 100% for 94 out of 96 samples. Compost appeared to be a source of PAHs in bioretention media, as biochar-amended media initially contained half the ΣPAHs as treatments with the standard 60:40 sand:compost mixture. We observed a net loss of ΣPAHs (19-73%) in bioretention media across the study, which could not be explained by PAHs in the effluent, suggesting that bioremediation by microbes and/or plants attenuated media PAHs. E. coli and fecal coliform were exported in the first dosing event, but all columns achieved some treatment in subsequent dosing events. Overall, these findings suggest that PAHs in stormwater can be remediated with bioretention, are unlikely to accumulate in bioretention media, and that biochar amendments can improve the treatment of E. coli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.116915 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!