Like humans, many felid species suffer from teratozoospermia and frequently produce low numbers of normal spermatozoa. Male fertility can be affected by oxidative and dicarbonyl stress. Because of the high level of glycolytic activity in testes, reactive dicarbonyl metabolites may arise as side-products of glycolysis; their generation is further promoted by oxidative stress. Alpha-oxoaldehydes, including methylglyoxal (MG), are reactive dicarbonyl metabolites and substrates for the formation of advanced glycation end products. Elevated levels of both may lead to dicarbonyl stress and cause cellular dysfunction. However, MG and other α-oxoaldehydes can be converted to less dangerous molecules via the glyoxalase pathway. In this pathway, α-oxoaldehydes react with glutathione (GSH), forming a thioacetal, which becomes metabolized by glyoxalase I (GLO I) to S-D-lactoyl-glutathione (SLG). Glyoxalase II (GLO II) converts SLG to d-lactate upon the release of GSH. Nothing is known about the glyoxalase system in the feline testis and its capacity to mitigate an excess of dicarbonyl metabolites. To study whether GLO I and GLO II are present and have a specific function in the testis of the domestic cat, the gene expression of both enzymes were analyzed in testis samples of different developmental stages (prepubertal, pubertal, postpubertal). Furthermore, the presence of GLO I and GLO II proteins was investigated via immunohistochemistry. The GLO I gene expression does not change between developmental stages. Immunohistochemistry revealed strong signals for GLO I in the cytoplasm and nuclei of Sertoli and Leydig cells during all developmental stages. GLO I was described as catalyzing the rate-limiting step in the glyoxalase pathway. This implies a function on the part of this enzyme of sustaining the homeostasis of somatic testicular cells. For GLO II, we observed stage-dependent mRNA expression, which was significantly increased after puberty. In accordance with this observation, clear immunohistochemical GLO II signals were observed in nuclei of individual germ cells. The most intense signals were visible in spermatocytes. The different localizations of the strong GLO I and GLO II signals indicate that GLO II, in addition to the classical glyoxalase pathway, may have additional functions in meiotic germ cells, for example, providing lactate as an energy substrate and/or GSH as an antioxidant. Moreover, protein functions may be modulated via S-glutathionylation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.theriogenology.2022.11.028DOI Listing

Publication Analysis

Top Keywords

glo
14
dicarbonyl metabolites
12
glyoxalase pathway
12
glo glo
12
developmental stages
12
testicular cells
8
domestic cat
8
dicarbonyl stress
8
reactive dicarbonyl
8
glyoxalase glo
8

Similar Publications

Background: Chemoresistance is a major obstacle in high-grade serous carcinoma (HGSC) treatment. Although many patients initially respond to chemotherapy, the majority of them relapse due to Carboplatin and Paclitaxel resistance. Drug repurposing has surfaced as a potentially effective strategy that works synergically with standard chemotherapy to bypass chemoresistance.

View Article and Find Full Text PDF

The objective of this study was to evaluate the changes in enzymic activity, metabolites, and hematological responses during the first 56-d of arrival of newly received calves, which were qualified at reception as high-risk but diagnosed as clinically healthy. A total of 320 blood samples were taken from 64 crossbred bull calves (average initial body weight = 148.3 ± 1.

View Article and Find Full Text PDF

We investigated whether microalgae or linseed supply during the early postpartum period affects ovarian restimulation and supports the first postpartum ovulation in lactating anovulatory goats. Thirty-eight An-glo-Nubian-crossbred adult goats were allocated into three groups, one with a control diet ( = 12), fed a total mixed ration (TMR) comprising chopped elephant grass and concentrate; an algal diet ( = 13), fed TMR + green microalgae (1% dry matter); and a linseed diet ( = 13), TMR + linseed (12% dry matter). Supplements were furnished from the second to fifth week (time of weaning).

View Article and Find Full Text PDF

The serine/threonine protein kinase CK2, a tetramer composed of a regulatory dimer (CK2β2) bound to two catalytic subunits CK2α, is a well-established therapeutic target for various pathologies, including cancer and viral infections. Several types of CK2 inhibitors have been developed, including inhibitors that bind to the catalytic ATP-site, bivalent inhibitors that occupy both the CK2α ATP-site and the αD pocket, and inhibitors that target the CK2α/CK2β interface. Interestingly, the bivalent inhibitor AB668 shares a similar chemical structure with the interface inhibitor CCH507.

View Article and Find Full Text PDF

Background: Here, we assessed the role of the advanced glycation end-product (AGE) precursor methylglyoxal (MGO) and its non-crosslinking AGE MGO-derived hydroimidazolone (MGH)-1 in aortic stiffening and explored the potential of a glycation stress-lowering compound (Gly-Low) to mitigate these effects.

Methods: Young (3-6 month) C57BL/6 mice were supplemented with MGO (in water) and Gly-Low (in chow). Aortic stiffness was assessed in vivo via pulse wave velocity (PWV) and ex vivo through elastic modulus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!