Objectives: Exosome-mediated reciprocal crosstalk between tumor and stromal cells plays a crucial role in tumor development and progression. This study investigated whether exosomes released from head and neck squamous cell carcinoma (HNSCC) tumor cells can convert normal fibroblasts into cancer-associated fibroblasts (CAF)-like cells and further analyzed the functional characterization of fibroblasts educated by tumor-derived exosomes.

Materials And Methods: Exosomes secreted from HNSCC cell lines were isolated and normal fibroblasts were established from normal oropharyngeal mucosa. The effects of the exosomes on fibroblasts were examined by proliferation and migration assays, and exosome-educated fibroblasts were analyzed for the expression of eight genes (IL1B, IL6, CXCL8, TGFB1, ACTA2, FAP, CD274, and PDCD1LG2) by RT-qPCR. Moreover, T cells or CD14-positive cells were co-cultured with culture supernatants from exosome-educated fibroblasts. T-cell proliferation and macrophage polarization were examined using flow cytometry. Then, RNA sequencing (RNA-seq) of exosome-educated fibroblasts and the corresponding control fibroblasts was performed.

Results: Tumor-derived exosomes enhanced fibroblast proliferation and migration. Moreover, gene expression analysis revealed upregulation of the gene expression of proinflammatory cytokines and immunoregulatory genes, and activated fibroblast marker genes. The culture supernatants of tumor-derived exosome-educated fibroblasts suppressed T cell proliferation and the induction of protumoral macrophages compared with those of control fibroblasts. Next, comprehensive RNA-seq analysis data revealed the activation of 11 signaling pathways, including IL-6- and IL-17-related signaling.

Conclusion: These results indicate that HNSCC tumor cells induce and/or differentiate into CAFs through exosome-based cell-to-cell communication to create an inflammatory tumor microenvironment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.oraloncology.2022.106270DOI Listing

Publication Analysis

Top Keywords

exosome-educated fibroblasts
16
fibroblasts
12
tumor-derived exosomes
8
cancer-associated fibroblasts
8
inflammatory tumor
8
tumor microenvironment
8
head neck
8
neck squamous
8
squamous cell
8
cell carcinoma
8

Similar Publications

Cancer-associated fibroblasts (CAFs) are essential players in the tumor microenvironment (TME) due to their roles in facilitating tumor progression and metastasis. It is worth noting that the high-metastatic hepatocellular carcinoma (HCC) cell-derived exosomes have exhibited the ability to transform normal fibroblasts into CAFs, which further fosters the lung metastasis of low-metastatic HCC cells. Yet, the mechanisms underlying this tumor exosome-induced metastatic niche formation are poorly explored.

View Article and Find Full Text PDF

Background: Benzo[a]pyrene (B[a]P), a carcinogen pollutant produced by combustion processes, is present in the western diet with grilled meats. Chronic exposure of B[a]P in hepatocellular carcinoma (HCC) cells promotes metastasis rather than primary proliferation, implying an unknown mechanism of B[a]P-induced malignancy. Given that exosomes carry bioactive molecules to distant sites, we investigated whether and how exosomes mediate cancer-stroma communications for a toxicologically associated microenvironment.

View Article and Find Full Text PDF

Objectives: Exosome-mediated reciprocal crosstalk between tumor and stromal cells plays a crucial role in tumor development and progression. This study investigated whether exosomes released from head and neck squamous cell carcinoma (HNSCC) tumor cells can convert normal fibroblasts into cancer-associated fibroblasts (CAF)-like cells and further analyzed the functional characterization of fibroblasts educated by tumor-derived exosomes.

Materials And Methods: Exosomes secreted from HNSCC cell lines were isolated and normal fibroblasts were established from normal oropharyngeal mucosa.

View Article and Find Full Text PDF

Salivary adenoid cystic carcinoma (SACC) is a rare head and neck malignancy characterized by unpredictable expansion, considerable perineural invasion and high risk of metastasis; however, the underlying mechanism of SACC progression remains unclear. Cancer-associated fibroblasts localized within the tumor microenvironment may promote cancer malignant transformation by enhancing tumor growth, blood vessel formation, inflammation development and metastasis occurrence. Small extracellular vesicles, including exosomes, are mediators of intercellular communication and can influence major tumor-associated pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!