The deposits of human islet amyloid polypeptide (IAPP), also called amylin, in the pancreas have been postulated to be a factor of pancreatic β-cell dysfunction and is one of the common pathological hallmarks of type II diabetes mellitus (T2DM). Therefore, it is imperative to gain an in-depth understanding of the formation of these aggregates. In this study, we demonstrate a rationally-designed strategy of an environmentally sensitive near-infrared (NIR) molecular rotor utilizing thioflavin T (ThT) as a scaffold for IAPP deposits. We extended the π delocalized system not only to improve the viscosity sensitivity but also to prolong the emission wavelength to the NIR region. A naphthalene moiety was also introduced to adjust the sensitivity of our designed probes to differentiate the binding microenvironment polarity of different targeted proteins. As a result, a novel NIR fluorogenic probe toward IAPP aggregates, namely AmySP-4-Nap-Ene, was first developed. When attached to different protein aggregates, this probe exhibited distinct fluorescence emission profiles. In a comparison with ThT, the fluorescence emission of non-ionic AmySP-4-Nap-Ene exhibits a significant difference between the presence of non-fibrillar and fibrillar IAPP and displays a higher binding affinity toward IAPP fibrils. Further, the AmySP-4-Nap-Ene can be utilized to monitor IAPP accumulating process and image fibrils both in vitro and in living cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2022.124130DOI Listing

Publication Analysis

Top Keywords

environmentally sensitive
8
molecular rotor
8
islet amyloid
8
amyloid polypeptide
8
fluorescence emission
8
iapp
6
sensitive molecular
4
nir
4
rotor nir
4
nir fluorescent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!