Objective: The aim of this study was to examine the effects of photodynamic therapy (PDT) on the expression of Nav1.7 in spinal dorsal root ganglion (DRG) neurons.

Methods: The primary DRG neurons from newborn SD rats were cultured. The cells were identified by neuron-specific enolase immunofluorescence staining. DRG neurons were divided into four groups: control group, photosensitizer group, laser group, and PDT group. The cell viability was detected by a cell counting kit-8 (CCK8) assay. qRT-PCR and Western blotting were used to determine the mRNA and protein expression levels of Nav1.7 in DRG neurons.

Results: The purity of the cultured primary DRG neurons was greater than 90%. Compared with the control group, no significant change was found in the cell viability of the photosensitizer group, while the viability in the laser group and the PDT group was significantly reduced. The mRNA and protein expression levels of Nav1.7 were significantly greater in the laser group and the PDT group than in the control group. At the same time, the mRNA and protein expression levels of Nav1.7 were greater in the laser group than in the PDT group.

Conclusion: Both laser and PDT could upregulate the expression of Nav1.7 in DRG neurons, and the promoting effect might be related to the pain induced by clinical treatment. This study provides a research basis for the use of laser and PDT to treat pain. A better understanding of the relationship between Nav1.7 and PDT can help clinicians better manage PDT-related pain.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11596-022-2640-2DOI Listing

Publication Analysis

Top Keywords

drg neurons
16
laser group
16
group pdt
16
group
12
control group
12
pdt group
12
mrna protein
12
protein expression
12
expression levels
12
levels nav17
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!