Plectranthus amboinicus is widely recognized as a potential source of antimicrobial compounds due to the presence of bioactive components (essential oils) secreted by the glandular trichomes borne on the leaves. As such, an understanding of the effect of leaf development on the production of these essential oils (EOs) is of crucial importance to its medicinal applications. The current study represents the first comparative investigation of the effect of different stages of leaf development (lag, log, and stationary phase) upon the yield and bioactivity of phytochemicals produced. The effects of leaf extracts on the antimicrobial activity, cell surface hydrophobicity, biofilm formation, and motility of P. aeruginosa and Staphylococcus aureus were evaluated. Cryo-scanning electron microscopy was used to record the abundance and distribution of both glandular and non-glandular trichomes during leaf development. Gas chromatography-mass spectrometry analysis revealed that the potent phytochemical thymol is present primarily in log (30.28%) and stationary phase (20.89%) extracts. Log phase extracts showed the lowest minimum inhibitory concentration (25 mg/ml) when compared to other phases of development. Stationary phase extracts were shown to exhibit the highest biofilm dispersal activity against P. aeruginosa (80%), and log phase extracts against biofilms of S. aureus (59%). Log phase extracts showed the highest biofilm inhibitory activity against P. aeruginosa (66%) and S. aureus (63%). In conclusion, log phase leaf extracts of P. amboinicus exhibited a multimodal mechanism of action by displaying antimicrobial, antibiofilm activities and reducing the motility and hydrophobicity, which are important virulence factors in P. aeruginosa and S. aureus pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-022-03126-7DOI Listing

Publication Analysis

Top Keywords

leaf development
16
log phase
16
phase extracts
16
stationary phase
12
plectranthus amboinicus
8
antimicrobial activity
8
virulence factors
8
staphylococcus aureus
8
essential oils
8
leaf extracts
8

Similar Publications

var. is an ancient relic plant unique to China. However, the typical shade-loving plant is largely exposed to the sun, which poses a major challenge to its conservation.

View Article and Find Full Text PDF

The Hemibiotrophic Apple Scab Fungus Induces a Biotrophic Interface but Lacks a Necrotrophic Stage.

J Fungi (Basel)

November 2024

Institute of Crop Science and Resource Conservation-Plant Pathology, Rheinische Friedrich-Wilhelms-Universitaet Bonn, 53115 Bonn, Germany.

Microscopic evidence demonstrated a strictly biotrophic lifestyle of the scab fungus on growing apple leaves and characterised its hemibiotrophy as the combination of biotrophy and saprotrophy not described before. The pathogen-host interface was characterised by the formation of knob-like structures of the fungal stroma appressed to epidermal cells as early as 1 day after host penetration, very thin fan-shaped cells covering large parts of the host cell lumen, and enzymatic cuticle penetration from the subcuticular space limited to the protruding conidiophores. The cell wall had numerous orifices, facilitating intimate contact with the host tissue.

View Article and Find Full Text PDF

Genome-Wide Development of InDel-SSRs and Association Analysis of Important Agronomic Traits of Taro () in China.

Curr Issues Mol Biol

November 2024

Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, China.

Taro ( (L.) Schott) is a tropical tuber crop whose underground corms are used as an important staple food. However, due to a lack of molecular markers, the genetic diversity, germplasm identification, and molecular breeding of taro are greatly limited.

View Article and Find Full Text PDF

Heat stress constitutes a serious threat to sesame ( L.). Root development during seed germination plays an essential role in plant growth and development.

View Article and Find Full Text PDF

Natural deep eutectic solvents (NaDES) were employed for the extraction of bilberry and green tea leaves. This study explored the incorporation of these NaDES extracts into various carrier systems: hydrogels, emulsions, and emulgels stabilized with hydroxyethyl cellulose or xanthan gum. The results demonstrated that, when combined with synthetic UV filters, the NaDES extracts significantly enhanced the SPF and improved the antioxidant properties of the formulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!