Phase-change semiconductor is one of the best candidates for designing nonvolatile memory, but it has never been realized in organic semiconductors until now. Here, a phase-changeable and high-mobility organic semiconductor (3,6-DATT) is first synthesized. Benefiting from the introduction of electrostatic hydrogen bond (S···H), the molecular conformation of 3,6-DATT crystals can be reversibly modulated by the electric field and ultraviolet irradiation. Through experimental and theoretical verification, the tiny difference in molecular conformation leads to crystalline polymorphisms and dramatically distinct charge transport properties, based on which a high-performance organic phase-change memory transistor (OPCMT) is constructed. The OPCMT exhibits a quick programming/erasing rate (about 3 s), long retention time (more than 2 h), and large memory window (i.e., large threshold voltage shift over 30 V). This work presents a new molecule design concept for organic semiconductors with reversible molecular conformation transition and opens a novel avenue for memory devices and other functional applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896068 | PMC |
http://dx.doi.org/10.1002/advs.202205694 | DOI Listing |
Viruses
January 2025
Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
Enterovirus-D68 (EV68) continues to present as a global health issue causing respiratory illness and outbreaks associated with long-lasting neurological disease, with no antivirals or specific treatment options. The development of antiviral therapeutics, such as small-molecule inhibitors that target conserved proteins like the enteroviral 3C protease, remains to be achieved. While various 3C inhibitors have been investigated, their design does not consider the potential emergence of drug resistance mutations.
View Article and Find Full Text PDFViruses
January 2025
School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
Bombyx mori bidensovirus (BmBDV), a significant pathogen in the sericulture industry, holds a unique taxonomic position due to its distinct segmented single-stranded DNA (ssDNA) genome and the presence of a self-encoding DNA polymerase. However, the functions of viral non-structural proteins, such as NS2, remain unknown. This protein is hypothesized to play a role in viral replication and pathogenesis.
View Article and Find Full Text PDFViruses
December 2024
Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India.
The increasing challenges posed by plant viral diseases demand innovative and sustainable management strategies to minimize agricultural losses. Exogenous double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) represents a transformative approach to combat plant viral pathogens without the need for genetic transformation. This review explores the mechanisms underlying dsRNA-induced RNAi, highlighting its ability to silence specific viral genes through small interfering RNAs (siRNAs).
View Article and Find Full Text PDFViruses
December 2024
Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
Coliphage N4 is a representative species of the family of bacteriophages. Originally structurally studied in 2008, the capsid structure was solved to 14 Å to reveal an interesting arrangement of Ig-like decoration proteins across the surface of the capsid. Herein, we present a high-resolution N4 structure, reporting a 2.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Rheology Department, Polymat Institute, University of the Basque Country, 20018 Donostia-San Sebastian, Euskadi, Spain.
This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!