Psychological stress is a big threat to people's health. Early detection of psychological stress is important. The design of a stress recognition device based on the ECG (electrocardiograph) signal is presented in this paper. The device features intelligence, precision, portability, fast response, and low power consumption. In the design, the ECG signals are acquired by the AD8232 ECG module and processed by a low power consumption FPGA (Field Programmable Gated Array) development board PYNQ-Z2. Meanwhile, a modified Deep Forest model named Aw-Deep Forest (Adaptive Weight Deep Forest) is proposed. The Aw-Deep Forest has better performance than the Deep Forest model because it improves the fitting quality of the forests. By implementing the Aw-Deep Forest model on the FPGA, the device can assess people's state of psychological stress by analyzing the HRV (heart rate variability) parameters from ECG data. This paper mainly introduces the detailed process of ECG signal collecting, filtering, analog signal to digital signal conversion, HRV parameter analysis, and psychological stress recognition with Aw-Deep Forest. The final accuracy is 81.39%.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0118630DOI Listing

Publication Analysis

Top Keywords

psychological stress
20
aw-deep forest
16
stress recognition
12
deep forest
12
forest model
12
heart rate
8
rate variability
8
variability parameters
8
field programmable
8
low power
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!