The few-layer transition metal dichalcogenides (TMD) are an attractive class of materials due to their unique and tunable electronic, optical, and chemical properties, controlled by the layer number, crystal orientation, grain size, and morphology. One of the most commonly used methods for synthesizing the few-layer TMD materials is the chemical vapor deposition (CVD) technique. Therefore, it is crucial to develop in situ inspection techniques to observe the growth of the few-layer TMD materials directly in the CVD chamber environment. We demonstrate such an in situ observation on the growth of the vertically aligned few-layer MoS in a one-zone CVD chamber using a laboratory table-top grazing-incidence wide-angle X-ray scattering (GIWAXS) setup. The advantages of using a microfocus X-ray source with focusing Montel optics and a single-photon counting 2D X-ray detector are discussed. Due to the position-sensitive 2D X-ray detector, the orientation of MoS layers can be easily distinguished. The performance of the GIWAXS setup is further improved by suppressing the background scattering using a guarding slit, an appropriately placed beamstop, and He gas in the CVD reactor. The layer growth can be monitored by tracking the width of the MoS diffraction peak in real time. The temporal evolution of the crystallization kinetics can be satisfactorily described by the Avrami model, employing the normalized diffraction peak area. In this way, the activation energy of the particular chemical reaction occurring in the CVD chamber can be determined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0104673 | DOI Listing |
Int J Mol Sci
December 2024
Pre-Clinical Research Centre, Wrocław Medical University, Marcinkowskiego 1, 50-368 Wrocław, Poland.
Percutaneous Coronary Intervention (PCI) is a treatment method that involves reopening narrowed arteries with a balloon catheter that delivers a cylindrical, mesh-shaped implant device to the site of the stenosis. Currently, by applying a coating to a bare metal stent (BMS) surface to improve biocompatibility, the main risks after PCI, such as restenosis and thrombosis, are reduced while maintaining the basic requirements for the mechanical behavior of the stent itself. In this work, for the first time, the development and optimization process of the spatial structure of the Co-Cr stent (L-605) with a graphene-based coating using cold-wall chemical vapor deposition (CW-CVD) to ensure uniform coverage of the implant was attempted.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315200, China. Electronic address:
Routine screening for cardiovascular diseases (CVDs) through point-of-care assays for at-home or community-based testing of salivary biomarkers can significantly improve patient outcomes. However, its translatability has been hindered by a dearth of biosensing devices that streamline assay procedures for rapid biomarker quantitation. To address this challenge through end-to-end engineering, we developed an in-house, all-in-one microfluidic immunosensing device that integrates on-chip vibration-enhanced incubation, magnetic-assisted separation using immune magnetic bead probes, and colorimetric readout via absorbance measurements.
View Article and Find Full Text PDFJ Clin Med
November 2024
Division of Metabolic Diseases, University Hospital Center Zagreb, 10000 Zagreb, Croatia.
Materials (Basel)
November 2024
Research Lab of Advanced, Composite, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Str., Zographos, 15780 Athens, Greece.
In this paper, we explore a straightforward two-step method to produce high-purity, vertically aligned multi-walled carbon nanofibres (MWCNFs) via chemical vapor deposition (CVD). Two distinct solutions are utilized for this CVD method: a catalytic solution consisting of ferrocene and acetonitrile (ACN) and a carbon source solution with camphor and ACN. The vapors of the catalytic solution inserted in the reaction chamber through external boiling result in a floating catalyst CVD approach that produces vertically aligned CNFs in a consistent manner.
View Article and Find Full Text PDFArch Virol
December 2024
NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Private Bag 4008, Narellan, NSW, 2567, Australia.
Viroids occur in plants as swarms of sequence variants clustered around a dominant variant, leading to adoption of the term 'quasispecies' to describe the viroid population in an individual host. The composition of the quasispecies can potentially change according to the age of the infection, the position of the leaf or branch in the canopy, and the host species. The primary aim of this study was to investigate the quasispecies concept for citrus viroid VII (CVd-VII), a recently discovered member of the family Pospiviroidae.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!