Recent achievements in the field of electronic skin (e-skin) have provided promising technology for service robots. However, the development of a bionic perception system that exhibits superior performance in terms of safety and interaction quality remains a challenge. Here, we demonstrate a biomimetic soft e-skin that is composed of an array of capacitors and air pouches. It is a single platform that shows dual-mode sensing capabilities of tactile sensing and proximity perception. We optimized the shape and area of the electrode via simulation of the approach of a robot to an object. Moreover, the compliance and temperature of the e-skin can be actively adjusted by tuning the pressure and heat of the air inside the pouches. The e-skin provided dual-mode sensing feedback and soft touch for humanoid service robots, for example, when a robot hugged a man, which illustrated the potential of this e-skin for applications in human-robot interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0112754DOI Listing

Publication Analysis

Top Keywords

e-skin provided
8
service robots
8
dual-mode sensing
8
e-skin
6
warm hug
4
hug robot
4
robot dual-mode
4
dual-mode e-skin
4
e-skin programming
4
programming compliance
4

Similar Publications

Adaptive Phase-Locked E-Skin for Sports Physiology and Medicine.

Small

December 2024

School of Chemistry and Molecular Engineering, In Situ Devices Research Center, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China.

The pursuit of creating materials that replicate the flexibility, stability, and advanced perceptual capabilities of human skin, attributes honed through natural evolution, represents a long-term objective in pioneering fields such as electronic skin (e-skin) research. However, conventional e-skin often struggles with stability and functionality in harsh sports environments, resulting in the degradation of the intimate interface over time. Inspired by the innate biphasic structure of human subcutaneous tissue, an adaptive phase-locked e-skin (APLE) is presented, designed to seamlessly conform to dynamic sports environments, offering robust applications in sports physiology and medical contexts without malfunctioning.

View Article and Find Full Text PDF
Article Synopsis
  • Collagen fiber skeleton from animal skin is an optimal base for creating electronic skin (e-skin), but challenges arise from mismatched interfaces and limited conductive networks.
  • A new e-skin design incorporating dual conduction methods (using NaCl and conductive spheres) is developed, featuring a robust 3D conductive pathway and strong hydrogen bonding, resulting in high strength, conductivity, and sensing performance.
  • This innovative design not only enhances sensitivity and environmental stability but also provides benefits like moisture retention and anti-freezing, positioning IECS as a versatile component for applications in wearable electronics and sensory technology.
View Article and Find Full Text PDF

Radiation therapy was initially used in dermatology to treat various skin diseases, including acne vulgaris, keloids, plantar warts, tinea capitis and hirsutism. Although it is no longer used in the treatment of many of these diseases, radiation therapy still plays a crucial role in the treatment of keloids, skin cancer and solid organ malignancies. In the past 20 years, the widespread use of intensity-modulated radiation therapy has significantly increased in the management of tumor growth in multiple cancer sites and reduced the incidence of complications in normal organs.

View Article and Find Full Text PDF

Top-down architecture of magnetized micro-cilia and conductive micro-domes as fully bionic electronic skin for de-coupled multidimensional tactile perception.

Mater Horiz

November 2024

Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China.

Electronic skin (E-skin) has attracted considerable attention for simulating the human sensory system for use in prosthetics, human-machine interactions, and healthcare monitoring. However, it is still challenging to fully mimic the skin function that can de-couple stimuli such as normal/tangential forces, contact/non-contact behaviors, and react to high-frequency inputs. Herein, we propose fully bionic E-skin (FBE-skin), which consists of a magnetized micro-cilia array (MMCA), a micro-dome array (MDA), and flexible electrodes to completely duplicate the hairy layer, epidermis/dermis interface, and subcutaneous mechanoreceptors of human skin.

View Article and Find Full Text PDF

The capacity to discern and locate positions in three-dimensional space is crucial for human-machine interfaces and robotic perception. However, current soft electronics can only obtain two-dimensional spatial locations through physical contact. In this study, we report a non-contact position targeting concept enabled by transparent and thin soft electronic skin (E-skin) with three-dimensional sensing capabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!