Advancements in computer-controlled polishing, metrology, and replication have led to an x-ray mirror fabrication process that is capable of producing high-resolution Wolter microscopes. We present the fabrication and test of a nickel-cobalt replicated full-shell x-ray mirror that was electroformed from a finely figured and polished mandrel. This mandrel was designed for an 8-m source-to-detector-distance microscope, with 10× magnification, and was optimized to reduce shell distortions that occur within 20 mm of the shell ends. This, in combination with an improved replication tooling design and refined bath parameters informed by a detailed COMSOL Multiphysics model, has led to reductions in replication errors in the mirrors. Mandrel surface fabrication was improved by implementing a computer-controlled polishing process that corrected the low-frequency mandrel figure error and achieved <2.0 nm RMS convergence error. X-ray tests performed on a pair of mirror shells replicated from the mandrel have demonstrated <10 μm full-width at half-maximum (FWHM) spatial resolution. Here, we discuss the development process, highlight results from metrology and x-ray testing, and define a path for achieving a program goal of 5 μm FWHM resolution.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0101304DOI Listing

Publication Analysis

Top Keywords

computer-controlled polishing
8
x-ray mirror
8
fabrication
4
fabrication 5-μm-resolution
4
5-μm-resolution wolter
4
wolter microscope
4
microscope national
4
national ignition
4
ignition facility
4
facility invited
4

Similar Publications

Optical systems in astronomy have extremely high requirements on the full-aperture surface precision and fabrication efficiency of aspherical mirrors. However, the current full-aperture optics fabrication method suffers from both fabrication and computation inefficiency. The former is caused by the isolated polishing strategy for the inner and edge regions of the mirror with different tools, while the latter is caused by the global computation strategy for the two regions.

View Article and Find Full Text PDF

With the continuous development of modern optical systems, the demand for full spatial frequency errors of optical components in the system is increasing. Although computer-controlled sub-aperture polishing technology can quickly correct low-frequency errors, this technology significantly worsens the mid-frequency errors on the surface of the component, which greatly inhibits the improvement of optical system performance. Therefore, we conducted in-depth research on the non-stationary effect of the removal function caused by the fluctuation in magnetorheological polishing and their influence on the mid-frequency errors of the component surface.

View Article and Find Full Text PDF

Nano-Precision Processing of NiP Coating by Magnetorheological Finishing.

Nanomaterials (Basel)

July 2023

Laboratory of Science and Technology on Integrated Logistics Support, College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China.

NiP coating has excellent physicochemical properties and is one of the best materials for coating optical components. When processing NiP coatings on optical components, single-point diamond turning (SPDT) is generally adopted as the first process. However, SPDT turning produces periodic turning patterns on the workpiece, which impacts the optical performance of the component.

View Article and Find Full Text PDF

In view of the problems of large surface roughness and low removal efficiency caused by the existing sapphire processing process, a combined polishing process based on temperature control computer controlled optical surfacing-magnetic rheology is proposed. The polishing removal mechanism of sapphire material polishing and the law of processing surface roughness change are studied. The optimal process parameters are obtained by designing the orthogonal experiments.

View Article and Find Full Text PDF

A non-contact ultrasonic abrasive machining approach provides a potential solution to overcome the challenges of machining efficiency in the high-precision polishing of optical components. Accurately modeling the material removal distribution (removal function (RF)) and surface morphology is very important in establishing this new computer-controlled deterministic polishing technique. However, it is a challenging task due to the absence of an in-depth understanding of the evolution mechanism of the material removal distribution and the knowledge of the evolution law of the microscopic surface morphology under the complex action of ultrasonic polishing while submerged in liquid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!