Reduction of noise induced by power supply lines using phase-locked loop.

Rev Sci Instrum

Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan.

Published: November 2022

An experimental implementation for the reduction of power-line noise in delicate signal detection is presented. This implementation improves the signal-to-noise ratio without limiting the bandwidth of the measurement. A sinusoidal wave and its harmonics, both synchronized with the frequency of the power line, are used to cancel out the power supply noise induced in the measurement signal. The wave and the harmonics are generated via a phase-locked loop implementation. Their amplitude and phase are adjusted, and then they are added to the measurement signal using a series of operational amplifiers to compensate for the noise. Although we applied this method to the particular case of scanning tunneling microscopy measurements, considerably improving the image quality, our implementation can be applied to other measurement systems for which noise from the power lines can compromise the signal detection.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0124433DOI Listing

Publication Analysis

Top Keywords

noise induced
8
power supply
8
phase-locked loop
8
signal detection
8
wave harmonics
8
measurement signal
8
reduction noise
4
power
4
induced power
4
supply lines
4

Similar Publications

Background And Objective: One of the functions attributed to the auditory efferent system is related to the processing of acoustic stimuli in noise backgrounds. However, clinical implications and the neurophysiological mechanisms of this system are not yet understood, especially on higher regions of the central nervous system. Only a few researchers studied the effects of noise on cortical auditory evoked potentials (CAEP), but the lack of studies in this area and the contradictory results, especially in children, point to the need to investigate different protocols and parameters that could allow the study of top-down activity in humans.

View Article and Find Full Text PDF

Introduction: Transcranial magnetic stimulation (TMS) is widely used for the noninvasive activation of neurons in the human brain. It utilizes a pulsed magnetic field to induce electric pulses that act on the central nervous system, altering the membrane potential of nerve cells in the cerebral cortex to treat certain mental diseases. However, the effectiveness of TMS can be compromised by significant heat generation and the clicking noise produced by the pulse in the TMS coil.

View Article and Find Full Text PDF

Noise-induced hearing loss is one of the most common forms of hearing loss in adults and also one of the most common occupational diseases. Extensive previous work has shown that the highly sensitive synapses of the inner hair cells (IHCs) may be the first target for irreparable damage and permanent loss in the noise-exposed cochlea, more precisely in the cochlear base. However, how such synaptic loss affects the synaptic physiology of the IHCs in this particularly vulnerable part of the cochlea has not yet been investigated.

View Article and Find Full Text PDF

Resilience-runtime tradeoff relations for quantum algorithms.

Rep Prog Phys

January 2025

Applied and Computational Mathematics Division, National Institutes of Standards and Technology (NIST), NA, College Park, Maryland, 20737, UNITED STATES.

A leading approach to algorithm design aims to minimize the number of operations in an algorithm's compilation. One intuitively expects that reducing the number of operations may decrease the chance of errors. This paradigm is particularly prevalent in quantum computing, where gates are hard to implement and noise rapidly decreases a quantum computer's potential to outperform classical computers.

View Article and Find Full Text PDF

Inverse stochastic resonance in a two-dimensional airfoil system with nonlinear pitching stiffness driven by Lévy noise.

Chaos

January 2025

State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

The aircraft can experience complex environments during the flight. For the random actions, the traditional Gaussian white noise assumption may not be sufficient to depict the realistic stochastic loads on the wing structures. Considering fluctuations with extreme conditions, Lévy noise is a better candidate describing the stochastic dynamical behaviors on the airfoil models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!