In this work, the first proof of the principal of an in situ diagnostics of the heavy-ion beam intensity distribution in irradiation of solid targets is proposed. In this scheme, x-ray fluorescence that occurs in the interaction of heavy-ions with target atoms is used for imaging purposes. The x-ray conversion to optical radiation and a transport-system was developed, and its first test was performed in experiments at the Universal Linear Accelerator in Darmstadt, Germany. The Au-beam intensity distribution on thin foils and Cu-mesh targets was imaged using multiple x-ray pinholes (polychromatic imaging) and 2D monochromatic imaging of Cu K radiation by using a toroidally bent silicon crystal. The presented results are of importance for application in experiments on the investigation of the equation of states of high energy density matter using high intensity GeV/u heavy-ion beams of ≥10 particles/100 ns.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0082932DOI Listing

Publication Analysis

Top Keywords

heavy-ion beam
8
x-ray fluorescence
8
intensity distribution
8
monitoring heavy-ion
4
beam distribution
4
distribution poly-
4
poly- monochromatic
4
x-ray
4
monochromatic x-ray
4
imaging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!