A compact solid state neutral particle analyzer (SSNPA) diagnostic, previously installed at NSTX-U, has been moved to MAST-U and successfully operated in the first physics campaign (MU01). The SSNPA operates by detecting the flux of fast neutral particles produced by charge exchange (CX) reactions to diagnose the fast ion distribution. The diagnostic consists of three 16-channel sensors, which provide a radial view of the plasma and have a sightline intersection with the South-South neutral beam line. From this radial geometry, active CX signals from mostly trapped particles are observed. Each channel has a spatial resolution of 3-4 cm, a temporal resolution of 200 kHz, and an average pitch angle resolution of a few degrees. The three-sensor configuration allows for coarse energy resolution of the CX signals; each sensor sees similar sightlines but different filter thicknesses alter the energy cutoffs by known amounts. Experimental data show that all channels are collecting data as intended. The signal to noise ratio is typically around 15. Preliminary data analysis shows a correlation between the SSNPA signal and magnetohydrodynamic activity in the plasma as expected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0101953 | DOI Listing |
J Am Chem Soc
January 2025
School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China.
Potassium (K)-based batteries hold great promise for cryogenic applications owing to the small Stokes radius and weak Lewis acidity of K. Nevertheless, energy-dense (>200 W h kg) K batteries under subzero conditions have seldom been reported. Here, an over 400 W h kg K battery is realized at -40 °C via an anode-free and dual-ion strategy, surpassing these state-of-the-art K batteries and even most Li/Na batteries at low temperatures (LTs).
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
The assembly of peptides is generally mediated by liquid-liquid phase separation, which enables control over assembly kinetics, final structure, and functions of peptide-based supramolecular materials. Modulating phase separation can alter the assembly kinetics of peptides by changing solvents or introducing external fields. Herein, we demonstrate that the assembly of peptides can be effectively catalyzed by complex coacervates.
View Article and Find Full Text PDFScience
January 2025
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
Axions, hypothetical elementary particles that remain undetectable in nature, can arise as quasiparticles in three-dimensional crystals known as axion insulators. Previous implementations of axion insulators have largely been limited to two-dimensional systems, leaving their topological properties in three dimensions unexplored in experiment. Here, we realize an axion insulator in a three-dimensional photonic crystal and probe its topological properties.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377 Munich, Germany.
Recently, we investigated a number of so-called σ- and τ-functionals based on the adiabatic-connection fluctuation-dissipation theorem (ACFDT); particularly, extensions of the random phase approximation (RPA) with inclusion of an exchange kernel in the form of an antisymmetrized Hartree kernel. One of these functionals, based upon the approximate exchange kernel (AXK) of Bates and Furche, leads to a nonlinear contribution of the spline function used within σ-functionals, which we previously avoided through the introduction of a simplified "top-down" approach in which the σ-functional modification is inserted a posteriori following the analytic coupling strength integration within the framework of the ACFDT and which was shown to provide excellent performance for the GMTKN55 database when using hybrid PBE0 reference orbitals. In this work, we examine the analytic "bottom-up" approach in which the spline function is inserted a priori, i.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi 830017, China.
The collisional energy transfer between vibrational excited H2(1, 7) and CO2 was investigated by exciting H2 to a vibrational excited state of v = 1, J = 7 by the stimulated Raman scattering technique. The coherent anti-Stokes Raman spectroscopy (CARS) technique determined that H2 was excited to the H2(1, 7) state. Varying the cuvette temperature, the number of H2(1, 7) particles was found to increase with the increase in H2 molar ratio α by scanning the intensity of the CARS spectrum, with peaks at different α at a temperature of 363 ± 15 K, but the peak temperature was not sensitive to α.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!